【题目】已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)= 是奇函数.
(1)讨论函数y=f(x)的单调性;
(2)若对任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求实数k的取值范围.
【答案】
(1)解:设g(x)=ax,(a>0且a≠1),g(3)=a3=8,
故a=2,f(x)= ,
任取实数x1<x2,
则f(x1)﹣f(x2)
= ﹣
= ,
∵x1<x2,考虑y=2x在R递增,
∴ > >0,
∴ ﹣ >0,(1+ )(1+ )>0,
∴f(x1)>f(x2),
∴y=f(x)在R递减;
(2)解:要使f(2t﹣3t2)+f(t2﹣k)>0恒成立,
即f(2t﹣3t2)>﹣f(t2﹣k)成立,
即f(2t﹣3t2)>f(k﹣t2)成立,
由(1)得:2t﹣3t2<k﹣t2,即k>﹣2t2+2t恒成立,
设h(t)=﹣2t2+2t=﹣2 + ,
h(t)max= ,
故k> .
【解析】(1)根据g(3)=a3=8,求出a的值,从而求出f(x)的解析式,根据函数单调性的定义判断函数的单调性即可;(2)根据函数f(x)的单调性和奇偶性得到2t﹣3t2<k﹣t2,即k>﹣2t2+2t恒成立,设h(t)=﹣2t2+2t=﹣2 + ,根据二次函数的性质求出k的范围即可.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:x2﹣4ax+3a2<0(其中a>0,x∈R),命题q:﹣x2+5x﹣6≥0,x∈R.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)定义在区间(﹣1,1)内,对于任意的x,y∈(﹣1,1)有f(x)+f(y)=f( ),且当x<0时,f(x)>0.
(1)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(2)若f(﹣ )=1,求方程f(x)+ =0的解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在透明塑料制成的长方体ABCD﹣A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状;
②水面四边形EFGH的面积不改变;
③棱A1D1始终与水面EFGH平行;
④当E∈AA1时,AE+BF是定值.其中正确说法的是( )
A.②③④
B.①②④
C.①③④
D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数. (Ⅰ)求a的值;
(Ⅱ)若关于x的方程|f(x)(2x+1)|=m有1个实根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=loga(ax+1)+mx是偶函数.
(1)求m;
(2)当a>1时,若函数f(x)的图象与直线l:y=﹣mx+n无公共点,求n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直. (Ⅰ) 若 ,且点P在函数 的图象上,求直线l的一般式方程;
(Ⅱ) 若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com