精英家教网 > 高中数学 > 题目详情
(2013•山东)设正实数x,y,z满足x2-3xy+4y2-z=0,则当
z
xy
取得最小值时,x+2y-z的最大值为(  )
分析:将z=x2-3xy+4y2代入
z
xy
,利用基本不等式化简即可求得x+2y-z的最大值.
解答:解:∵x2-3xy+4y2-z=0,
∴z=x2-3xy+4y2,又x,y,z为正实数,
z
xy
=
x
y
+
4y
x
-3≥2
x
y
4y
x
-3=1(当且仅当x=2y时取“=”),
即x=2y(y>0),
∴x+2y-z=2y+2y-(x2-3xy+4y2
=4y-2y2
=-2(y-1)2+2≤2.
∴x+2y-z的最大值为2.
故选C.
点评:本题考查基本不等式,将z=x2-3xy+4y2代入
z
xy
,求得
z
xy
取得最小值时x=2y是关键,考查配方法求最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•山东)设正实数x,y,z满足x2-3xy+4y2-z=0.则当
xy
z
取得最大值时,
2
x
+
1
y
-
2
z
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足
b1
a1
+
b2
a2
+…+
bn
an
=1-
1
2n
,n∈N*,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设函数f(x)=
3
2
-
3
sin2ωx-sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为
π
4

(Ⅰ)求ω的值
(Ⅱ)求f(x)在区间[π,
2
]上的最大值和最小值.

查看答案和解析>>

同步练习册答案