精英家教网 > 高中数学 > 题目详情

求实数k的取值范围.

 

答案:
解析:

f(x)的定义域为R等价于ax4axk0ax4axk≠1对一切x∈R恒成立,即对一切x∈R恒成立.

因为ax4ax≥4,所以使x∈R恒成立的充要条件是k4

,令ax=t,则t0等价于方程t2(k1)t4=0无正根.  

k3.  至此应将k4k3交集,得k3

<

 


提示:

f(x)的定义域为R等价于ax4axk0ax4axk≠1对一切x∈R恒成立

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宁德模拟)已知函数f(x)=2x+k•2-x,k∈R.
(1)若函数f(x)为奇函数,求实数k的值;
(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
b
=(
3
,2cosωx)
,设函数f(x)=
a
b
(x∈R)
的图象关于直线x=
π
2
对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的
1
6
,再将所得图象向右平移
π
3
个单位,纵坐标不变,得到y=h(x)的图象,若关于x的方程h(x)+k=0在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x-a
2x+1
(a∈R)是奇函数.
(1)求a的值;
(2)求函数F(x)=f(x)+2x-
4
2x+1
-1的零点;
(3)设g(x)=log4
k+x
1-x
,若方程f-1(x)=g(x)在x∈[
1
2
2
3
]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
22x+1
 (a∈R)

(1)判断并证明函数的单调性;
(2)若函数为f(x)奇函数,求实数a的值;
(3)在(2)的条件下,若对任意的t∈R,不等式f(t2+2)+f(t2-tk)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=
n-g(x)m+2g(x)
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(2t-3t2)+f(t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案