精英家教网 > 高中数学 > 题目详情
已知锐角△ABC中,角A、B、C的对边分别为a,b,c,a=
2
,b=
3
,B=
π
3

(Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=cosB•sin2x+cos2x,当x∈[-
π
4
,0]
时,求f(x)的值域.
分析:(1)先根据正弦定理可求得求出sinA进而根据角A的锐角,得到角A的值.
(2)先根据两角和与差的正弦定理化简函数f(x),再由x的范围求出2x+
π
4
的范围,再由正弦函数的性质求出sin(2x+
π
4
)的范围,求出函数f(x)的值域.
解答:解:(1)由正弦定理得
2
sinA
=
3
sin
π
3
,sinA=
2
2

又A为锐角,∴A=
π
4

(2)f(x)=
1
2
sin2x+
1
2
cos2x+
1
2
=
2
2
sin(2x+
π
4
)
+
1
2

-
π
4
≤x≤0
-
π
4
≤2x+
π
4
π
4

-
2
2
≤sin(2x+
π
4
)≤
2
2

0≤
2
2
sin(2x+
π
4
)+
1
2
≤1

所以f(x)的值域为[0,1]
点评:本题主要考查正弦定理和两角和与差的正弦定理的应用.三角函数部分公式比较多,不容易记,一定要强化记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知锐角△ABC中的三个内角分别为A,B,C.
(1)设
BC
CA
=
CA
AB
,求证:△ABC是等腰三角形;
(2)设向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)已知锐角△ABC中内角A,B,C的对边分别为a,b,c,且c=6,向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t

(1)求C的大小;
(2)若sinA=
1
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(其中x∈R,A?>0,ω>0,-
π
2
<φ<
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)已知锐角△ABC中的三个内角分别为A,B,C,若有f(
A
π
)=
3
2
,边BC=
7
,sin B=
21
7
求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中,三个内角为A,B,C,两向量
p
=(2-2sinA,cosA+sinA),
q
=(sinA-cosA,1+sinA),若
p
q
是共线向量.
(1)求∠A的大小;  
(2)求函数y=2sin2B+cos(
C-3B
2
)
取最大值时,∠B的大小.

查看答案和解析>>

同步练习册答案