ÒÑÖªº¯Êýf(x)=x+
tx
(t£¾0)
ºÍµãP£¨1£¬0£©£¬¹ýµãP×÷ÇúÏßy=f£¨x£©µÄÁ½ÌõÇÐÏßPM£¬PN£¬Çеã·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®
£¨1£©ÇóÖ¤£ºx1£¬x2ÊǹØÓÚxµÄ·½³Ìx2+2tx-t=0µÄÁ½¸ù£»
£¨2£©Éè|MN|=g£¨t£©£¬Çóº¯Êýg£¨t£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôÔÚÇø¼ä[2£¬16]ÄÚ×Ü´æÔÚm+1¸öʵÊýa1£¬a2£¬¡­£¬am+1£¬Ê¹µÃ²»µÈʽg£¨a1£©+g£¨a2£©+¡­+g£¨am£©£¼g£¨am+1£©³ÉÁ¢£¬ÇóʵÊýmµÄ×î´óÖµ£®
·ÖÎö£º£¨1£©Óõ¼ÊýÖµÓëÇÐÏßµÄбÂÊÏàµÈ£¬Çó³öÇеãºá×ø±êµÄ¹Øϵ£¬ÅжÏÊÇ·½³Ìx2+2tx-t=0µÄÁ½¸ù¼´¿É£»
£¨2£©Çó¹ýÇеãµÄÇÐÏß·½³Ì£¬ÕÒ³öÁ½Çеã¹Øϵ£¬ÔÙÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó½â¼´¿É£»
£¨3£©ÀûÓú¯ÊýµÄµ¥µ÷ÐÔת»¯Îªºã³ÉÁ¢ÎÊÌ⣮
½â´ð£º½â£º£¨1£©º¯Êýf(x)=x+
t
x
(t£¾0)
¿ÉµÃf¡ä£¨x£©=1-
t
x2
£¬Çе㣨x£¬x+
t
x
£©£¬ËùÒÔ
x+
t
x
x-1
=1-
t
x2
£¬
¿ÉµÃx2+2tx-t=0£¬ÏÔÈ»·½³ÌµÄÁ½¸ö¸ù¾ÍÊÇÇеã·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©µÄºá×ø±ê£¬
ËùÒÔx1£¬x2ÊǹØÓÚxµÄ·½³Ìx2+2tx-t=0µÄÁ½¸ù£»
£¨2£©ÒòΪM¡¢NÁ½µãµÄºá×ø±ê·Ö±ðΪx1¡¢x2£¬
ÓÖf¡ä£¨x£©=1-
t
x2
£¬¡àÇÐÏßPMµÄ·½³ÌΪ£ºy-£¨x1+
t
x1
£©=£¨1-
t
x
2
1
£©£¨x-x1£©£®
ÓÖ¡ßÇÐÏßPM¹ýµãP£¨1£¬0£©£¬¡àÓÐ0-£¨x1+
t
x1
£©=£¨1-
t
x
2
1
£©£¨1-x1£©£®
¼´x12+2tx1-t=0£®£¨1£©
ͬÀí£¬ÓÉÇÐÏßPNÒ²¹ýµã£¨1£¬0£©£¬µÃx22+2tx2-t=0£®£¨2£©
ÓÉ£¨1£©¡¢£¨2£©£¬¿ÉµÃx1£¬x2ÊÇ·½³Ìx2+2tx-t=0µÄÁ½¸ù£¬
¡à
x1+x2=-2t
x1x2=-t
   £¨*£©
|MN|=
(x1-x2)2+(x1+
t
x1
 -x2-
t
x2
 )2

=
(x1-x2)2[1+(1-
t
x1x2
 )2]

=
[(x1+x2)2-4x1x2][1+(1-
t
x1x2
 )2]

°Ñ£¨*£©Ê½´úÈ룬µÃ|MN|=2
5t2+5t
£¬
Òò´Ë£¬º¯Êýg£¨t£©µÄ±í´ïʽΪg£¨t£©=2
5t2+5t
£¨t£¾0£©
£¨3£©Ò×Öªg£¨t£©ÔÚÇø¼ä[2£¬16]ÉÏΪÔöº¯Êý£¬
¡àg£¨2£©¡Üg£¨ai£©£¨i=1£¬2£¬m+1£©£®
Ôòm•g£¨2£©¡Üg£¨a1£©+g£¨a2£©+¡­+g£¨am£©£®
¡ßg£¨a1£©+g£¨a2£©+¡­+g£¨am£©£¼g£¨am+1£©¶ÔÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¬
¡à²»µÈʽm•g£¨2£©£¼g£¨16£©¶ÔÒ»ÇеÄÕýÕûÊýnºã³ÉÁ¢m2
5¡Á4+5¡Á2
£¼2
5¡Á162+5¡Á16
£¬
¼´m£¼
85¡Á16
30
=
80
3
¶ÔÒ»ÇеÄÕýÕûÊýnºã³ÉÁ¢
ÓÉÓÚmΪÕýÕûÊý£¬¡àm¡Ü6£®ÓÖµ±m=6ʱ£¬´æÔÚa1=a2=am=2£¬am+1=16£¬¶ÔËùÓеÄnÂú×ãÌõ¼þ£®
Òò´Ë£¬mµÄ×î´óֵΪ6£®
µãÆÀ£º±¾ÌâµÚÒ»ÎʱȽϻù´¡£¬¶þÈýÎʱȽϸ´ÔÓ£¬¿¼ÇÐÏßÎÊÌ⣬ºÍÊýÁÐÎÊÌ⣬ÓÖÉø͸Á˺ã³ÉÁ¢Ë¼Ï룬´ËÌâ±È½ÏУ¬ËäÊÇѹÖáÌ⵫²¢²»ÏñÒÔÍùѹÖáÌâµÄ˼·£¬ÓÐÍ»ÆÆÓд´Ð£¬×ÐϸÉóÌâÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=x-2m2+m+3(m¡ÊZ)Ϊżº¯Êý£¬ÇÒf£¨3£©£¼f£¨5£©£®
£¨1£©ÇómµÄÖµ£¬²¢È·¶¨f£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôg£¨x£©=loga[f£¨x£©-ax]£¨a£¾0ÇÒa¡Ù1£©£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹g£¨x£©ÔÚÇø¼ä[2£¬3]ÉϵÄ×î´óֵΪ2£¬Èô´æÔÚ£¬ÇëÇó³öaµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÕã½­Ê¡¶«ÑôÖÐѧ¸ßÈý10Ô½׶ÎÐÔ¿¼ÊÔÊýѧÀí¿ÆÊÔÌâ ÌâÐÍ£º022

ÒÑÖªº¯Êýf(x)µÄͼÏñÔÚ[a£¬b]ÉÏÁ¬Ðø²»¶Ï£¬f1(x)£½min{f(t)|a¡Üt¡Üx}(x¡Ê[a£¬b])£¬f2(x)£½max{f(t)|a¡Üt¡Üx}(x¡Ê[a£¬b])£¬ÆäÖУ¬min{f(x)|x¡ÊD}±íʾº¯Êýf(x)ÔÚDÉϵÄ×îСֵ£¬max{f(x)|x¡ÊD}±íʾº¯Êýf(x)ÔÚDÉϵÄ×î´óÖµ£¬Èô´æÔÚ×îСÕýÕûÊýk£¬Ê¹µÃf2(x)£­f1(x)¡Ük(x£­a)¶ÔÈÎÒâµÄx¡Ê[a£¬b]³ÉÁ¢£¬Ôò³Æº¯Êýf(x)Ϊ[a£¬b]Éϵġ°k½×ÊÕËõº¯Êý¡±£®ÒÑÖªº¯Êýf(x)£½x2£¬x¡Ê[£­1£¬4]Ϊ[£­1£¬4]Éϵġ°k½×ÊÕËõº¯Êý¡±£¬ÔòkµÄÖµÊÇ_________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄêºÓÄÏÊ¡Ðí²ýÊг¤¸ðÈý¸ß¸ßÈýµÚÆߴο¼ÊÔÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªº¯Êýf£¨x£©¡¢g£¨x£©£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £©
A£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇÆ溯Êý£¬Ôòf£¨x£©+g£¨x£©ÊÇÆ溯Êý
B£®f£¨x£©ÊÇżº¯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©ÊÇżº¯Êý
C£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©Ò»¶¨ÊÇÆ溯Êý»òżº¯Êý
D£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©¿ÉÒÔÊÇÆ溯Êý»òżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸