精英家教网 > 高中数学 > 题目详情
已知α是锐角,=(sinα,),,且,则α=   
【答案】分析:根据  可得3sinα-cosα=0,求得tanα,利用三角函数公式求得α的值.
解答:解:由题意可得  3sinα-cosα=0,
∴tanα==,α是锐角
∴α=30°
故答案为 30°.
点评:本题考查两个向量共线的性质,同角三角函数的基本关系,求出tanα 的值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在三棱锥T-ABC中,TA,TB,TC两两垂直,T在地面ABC上的投影为D,给出下列命题:
①TA⊥BC,TB⊥AC,TC⊥AB;
②△ABC是锐角三角形;
1
TD2
=
1
TA2
+
1
TB2
+
1
TC2

S
2
△ABC
=
1
3
(
S
2
△TAB
+
S
2
△TAC
+
S
2
△TBC
)
(注:S△ABC表示△ABC的面积)
其中正确的是
 
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中的三个内角分别为A,B,C.
(1)设
BC
CA
=
CA
AB
,求证:△ABC是等腰三角形;
(2)设向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,1)
n
=(
3
cosx,
1
2
)
,函数f(x)=(
m
+
n
)•
m

(1)求函数f(x)的最小正周期T及单调增区间;
(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,A为锐角,a=2
3
,c=4且f(A)是函数f(x)在[0,
π
2
]
上的最大值,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1′.圆C2:x2+(y-4)2=1的圆心为点N.已知点P是抛物线C1′上一点(异于原点),过点P作圆C2的两条切线,交抛物线C′1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC是锐角三角形,a、b、c分别是内角A、B、C所对边长,已知向量
m
=(sin(
π
3
+B),sinB-sinA),
n
=(sin(
π
3
-B),sinB+sinA)
,若
m
n

(1)求角A的值
(2)若a=3
3
,b=2c
,求三角形面积S△ABC

查看答案和解析>>

同步练习册答案