精英家教网 > 高中数学 > 题目详情

已知函数f(x)=alnx―ax―3(a∈R且a≠0).

(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)若函数y=f(x)的图像在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数在区间(t,3)上总存在极值?

(Ⅲ)当a=2时,设函数h(x)=(p-2)x――3,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.

答案:
解析:

  解:(Ⅰ)由知:

  当时,函数的单调增区间是,单调减区间是

  当时,函数的单调增区间是,单调减区间是  4分

  (Ⅱ)由,∴

  故,……6分

  ∴,∵函数在区间上总存在极值,

  ∴有两个不等实根且至少有一个在区间

  又∵函数是开口向上的二次函数,且

  ∴  8分

  由,∵上单调递减,所以;∴,由,解得

  综上得:所以当内取值时,对于任意的,函数在区间上总存在极值  10分

  (Ⅲ),则

  

  ①当时,由,从而

  所以,在上不存在使得

  ②当时,上恒成立,故上单调递增.

  故只要,解得综上所述,的取值范围是  14分


练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省南昌市高一5月联考数学卷(解析版) 题型:解答题

已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.

(1)求函数f(x)的解析式;

(2)设k>1,解关于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中数学 来源:2015届辽宁盘锦市高一第一次阶段考试数学试卷(解析版) 题型:解答题

(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省莱芜市高三上学期10月测试理科数学 题型:解答题

(本小题满分l2分)

已知函数f(x)=a

 

(1)求证:函数yf(x)在(0,+∞)上是增函数;

 

(2)f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题

( (本小题满分13分)

已知函数f(x)=(a-1)xaln(x-2),(a<1).

(1)讨论函数f(x)的单调性;

(2)设a<0时,对任意x1x2∈(2,+∞),<-4恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高一期末考试文科数学 题型:解答题

(12分)已知函数f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函数的定义域   (2)讨论函数f(X)的单调性

 

查看答案和解析>>

同步练习册答案