精英家教网 > 高中数学 > 题目详情

f(x)=数学公式,已知f(m)=1,求m.

解:由题意可得
解可得,x=-1或x=-3,或x=3
∵f(m)=1
∴m=-1或m=±3
分析:由可求x,即可求解m
点评:本题主要考查了分段函数的函数解析式的 应用,体现了分类讨论思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)满足条件:当x∈R时,恒有f(x+2)=f(x),且0≤x≤1时,有f′(x)>0,则f(
98
19
),f(
101
17
),f(
106
15
)的大小关系是(  )
A、f(
98
19
)>f(
101
17
)>f(
106
15
B、f(
106
15
)>f(
98
19
)>f(
101
17
C、f(
101
17
)>f(
98
19
)>f(
106
15
D、f(
106
15
)>f(
101
17
)>f(
98
19

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域是(0,+∞),且对任意的正实数x,y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且x>1时,f(x)>0.
(1)求f(
12
)的值;
(2)判断y=f(x)在(0,+∞)上的单调性,并给出你的证明;
(3)解不等式f(x2)>f(8x-6)-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域是x≠0的一切实数,对于定义域内任意的x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.
(1)求证f(x)是偶函数;
(2)求证f(x)在(0,+∞)上是增函数;
(3)若f(a+1)>f(a)+1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏模拟)f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及D中的任意两数x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数f1(x)=x2f2(x)=
1x
(x<0)
中哪些是各自定义域上的C函数,并说明理由;
(Ⅱ)已知f(x)是R上的C函数,m是给定的正整数,设an=f(n),n=0,1,2,…,m,且a0=0,am=2m,记Sf=a1+a2+…+am.对于满足条件的任意函数f(x),试求Sf的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

同步练习册答案