精英家教网 > 高中数学 > 题目详情
2.在(1+x+x2)(1-x)10的展开式中,含x3项的系数是-85.

分析 把(1-x)10按照二项式定理展开,可得(1+x+x2)(1-x)10的展开式中,含x3项的系数.

解答 解:(1+x+x2)(1-x)10 =(1+x+x2)(1-${C}_{10}^{1}$•x+${C}_{10}^{2}$•x2-${C}_{10}^{3}$•x3+…+${C}_{10}^{10}$•x10),
故含x3项的系数是-${C}_{10}^{3}$+${C}_{10}^{2}$-${C}_{10}^{1}$=-85,
故答案为:-85.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.三角形ABC满足,|$\overrightarrow{AB}+\overrightarrow{AC}$|=|$\overrightarrow{AB}-\overrightarrow{AC}$|,点M为边BC的中点,且|$\overrightarrow{AM}$|=4,$\overrightarrow{AM}•(\overrightarrow{AB}-\overrightarrow{AC})$=0,则边AC的长度为(  )
A.4$\sqrt{2}$B.4C.8$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a∈R,若f(x)=$\frac{1}{2}{x^2}$-|x-2a|有三个或四个零点,则g(x)=ax2+4x+1的零点个数为(  )
A.2B.1或2C.0或2D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[{T({\frac{k-1}{5}})-T({\frac{k-2}{5}})}]\\{y_k}={y_{k-1}}+T({\frac{k-1}{5}})-T({\frac{k-2}{5}})\end{array}\right.$T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第2011棵树种植点的坐标应为(1,403).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)的二次项系数为a,且不等式f(x)+2x>0的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等实数根,求f(x)的解析式.
(2)若关于x的不等式f(x)>0在R上有解,求实数a的取值范围.
(3)若关于x的不等式-2≤f(x)≤-1在R上有唯一解,且关于x的不等式m≤f(x)≤n解集为[x1,x2]∪[x3,x4],x1<x2<x3<x4,求实数a的取值集合及$\sum_{i=1}^4{x_i}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}(q>0)中,a3=4,a2•a6=64,则a2=(  )
A.4B.5C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(x-c)|x-c|,g(x)=alnx.
(1)试判断函数f(x)与g(x)的单调性;
(2)记F(x)=f(x)+g(x),a<0,c>0.
①当c=$\frac{a}{2}$+1时,若F(x)≥$\frac{1}{4}$对x∈(c,+∞)恒成立,求实数a的取值范围;
②设函数F(x)的图象在点P(x1,F(x1)),Q(x2,F(x2))处的切线分别为l1,l2,若x1=$\sqrt{-\frac{a}{2}}$,x2=c,且l1⊥l2,求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.满足条件 {1,2}∪B={1,2,3,4,5}的所有集合B的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等腰直角三角形ABC中,D为斜边AB上任意一点,则AD的长小于AC的长的概率为(  )
A.$\frac{1}{2}$B.$1-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案