精英家教网 > 高中数学 > 题目详情
直线
3
x+y-2=0与圆x2+y2=4交于A,B两点,则|AB|=(  )
A、1
B、2
3
C、2
2
D、2
考点:直线与圆相交的性质
专题:直线与圆
分析:由条件利用直线和圆相交的性质,点到直线的距离公式,弦长公式,求得|AB|的值.
解答: 解:由于圆的半径为2,弦心距d=
|0+0-2|
3+1
=1,可得弦长AB=2
r2-d2
=2
3

故选:B.
点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地方政府在某地建一座桥,两端的桥墩相距m米,此工程只需建两端桥墩之间的桥面和桥墩(包括两端的桥墩),经预测,一个桥墩的费用为32万元,相邻两个桥墩之间的距离均为x,且相邻两个桥墩之间的桥面工程费用为(1+x)x万元,假设所有桥墩都视为点且不考虑其它因素,记工程总费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=80米时,需要新建多少个桥墩才能使y最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)=ax-ex(a∈R),g(x)=
1nx
x

(I)求函数f (x)的单调区间;
(Ⅱ)?x0∈(0,+∞),使不等式f (x)≤g(x)-ex成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数f(x)与g(x)的图象相同的是(  )
A、f(x)=x,g(x)=(
x
2
B、f(x)=x2,g(x)=(x+1)2
C、f(x)=1,g(x)=x0
D、f(x)=|x|,g(x)=
x
-x
(x≥0)
(x<0)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ADE-BCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点,运动向量方法证明:
(1)OM∥平面BCF;
(2)平面MDF⊥平面EFCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
1
1+sin2x
+
1
1+cos2x
+
1
2+tan2x
+
1
2+cot2x
=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,1),B(1,-2),C(
3
5
,-
1
5
),动点P(a,b)满足0≤
OP
OA
≤2且0≤
OP
OB
≤2,则点P到点C的距离大于
1
4
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2-ax+2a=0的两个根均大于1,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)(A>0,|φ|<π)的一段图象如图所示.
(1)求函数的解析式;
(2)求这个函数的单调递增区间.

查看答案和解析>>

同步练习册答案