| ξ | 1 | 2 | 3 |
| P | 0.5 | x | y |
| A. | $\frac{55}{64}$ | B. | $\frac{33}{64}$ | C. | $\frac{7}{32}$ | D. | $\frac{9}{32}$ |
分析 首先由ξ的分布列的性质得到x+y=$\frac{1}{2}$,E(ξ)=1×0.5+2x+3y=$\frac{15}{8}$,可求得x、y的值,利用离散型随机变量方差的计算公式求得D(ξ)的值.
解答 解:由E(ξ)=1×0.5+2x+3y=$\frac{15}{8}$,整理得:2x+3y=$\frac{11}{8}$,
由0.5+x+y=1,即x+y=$\frac{1}{2}$,
∴x=$\frac{1}{8}$,y=$\frac{3}{8}$,
D(ξ)=(1-$\frac{15}{8}$)2×0.5+(2-$\frac{15}{8}$)2×$\frac{1}{8}$+(3-$\frac{15}{8}$)2×$\frac{3}{8}$=$\frac{55}{64}$,
故选A.
点评 本题考查离散型随机变量方差,考查离散型随机变量方差及数学期望的计算公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 3 | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | lg12 | C. | lg20 | D. | 4lg2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com