精英家教网 > 高中数学 > 题目详情
8.已知数列{an}满足${a_1}=\frac{7}{6}$,${a_{n+1}}=\frac{1}{2}{a_n}+\frac{1}{3}$,
(1)当${a_n}≠\frac{2}{3}$时,求证{${a_n}-\frac{2}{3}$}是等比数列;
(2)求数列{an}的通项公式.

分析 (1)通过对${a_{n+1}}=\frac{1}{2}{a_n}+\frac{1}{3}$变形可知an+1-$\frac{2}{3}$=$\frac{1}{2}$(an-$\frac{2}{3}$),利用${a_n}≠\frac{2}{3}$即得结论;
(2)通过(1)及等比数列的求和公式计算即得结论.

解答 (1)证明:∵${a_{n+1}}=\frac{1}{2}{a_n}+\frac{1}{3}$,
∴an+1-$\frac{2}{3}$=$\frac{1}{2}$(an-$\frac{2}{3}$),
又∵${a_n}≠\frac{2}{3}$,
∴an-$\frac{2}{3}$≠0,
∴数列{${a_n}-\frac{2}{3}$}是公比为$\frac{1}{2}$的等比数列;
(2)解:由${a_1}=\frac{7}{6}$及(1)可知,an-$\frac{2}{3}$=($\frac{7}{6}$-$\frac{2}{3}$)•$\frac{1}{{2}^{n-1}}$=$\frac{1}{{2}^{n}}$,
∴an=$\frac{2}{3}$+$\frac{1}{{2}^{n}}$.

点评 本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.双曲线$\frac{x^2}{2}-\frac{y^2}{4}=1$的一个焦点F到其渐近线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若某几何体的三视图如图所示,则此几何体的体积等于(  )
A.$\frac{75}{2}$B.30C.75D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=$\frac{π}{6}$,C=$\frac{π}{4}$,求:(1)c,a的值(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U是实数集R,M={x|y=ln(x2-2x) },N={y|y=$\sqrt{x}+1$},则图中阴影部分表示的集合是(  )
A.{x|-2≤x<2}B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x1,x2,x3,…,x2013的方差为3,则3x1,3x2,3x3,…,3x2013的方差为(  )
A.3B.9C.18D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.1升水中有2只微生物,任取0.1升水化验,含有微生物的概率是(  )
A.0.01B.0.19C.0.1D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=(x+2)n+(x-2)n,其中$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,则f(x)的展开式中x4的系数为(  )
A.120B.-120C.60D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0(m>0,n>0)上,则$\frac{1}{m}$+$\frac{1}{n}$的最小值为4.

查看答案和解析>>

同步练习册答案