精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=(x+2)n+(x-2)n,其中$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,则f(x)的展开式中x4的系数为(  )
A.120B.-120C.60D.0

分析 利用定积分求出n,然后利用二项式定理求解即可.

解答 解:$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$=3(sinx)${|}_{-\frac{π}{2}}^{\frac{π}{2}}$=3[sin$\frac{π}{2}$$-sin(-\frac{π}{2})$]=6.
函数f(x)=(x+2)n+(x-2)n=(x+2)6+(x-2)6
由Tr+1=${C}_{6}^{r}$x6-r(-2)r+${C}_{6}^{r}$x6-r2r
令6-r=4,得r=2.
∴f (x)的展开式中的x4系数为2×22•${C}_{6}^{2}$=120.
故选:A.

点评 本题考查定积分,二项式定理的应用,考查了基本初等函数的导数公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)f(b),且f(1)=1,则$\frac{f(2)}{f(1)}+\frac{f(3)}{f(2)}+\frac{f(4)}{f(5)}+…+\frac{f(2015)}{f(2014)}$=2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足${a_1}=\frac{7}{6}$,${a_{n+1}}=\frac{1}{2}{a_n}+\frac{1}{3}$,
(1)当${a_n}≠\frac{2}{3}$时,求证{${a_n}-\frac{2}{3}$}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,若f(1-2a)<f(|a-2|),则实数a的取值范围为(  )
A.a<1B.a>1C.-1<a<1D.a<-1或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a是第三象限角,cosa=-$\frac{3}{5}$,则tan$\frac{a}{2}$=(  )
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}各项均为正数,其前n项和Sn满足$4{S_n}={a_n}^2+2{a_n}+1$(n∈N+).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:${b_n}={a_n}•{2^{\frac{{{a_n}-1}}{2}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥S-ABCD中,已知底面ABCD为直角梯形,其中AD∥BC,∠BAD=90°,SA⊥底面ABCD,SA=AB=BC=2,CD=$\sqrt{5}$.
(1)求四棱锥S-ABCD的体积;
(2)在棱SD上找一点E,使CE∥平面SAB,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i是虚数单位,复数$\frac{5}{2-i}-i$=(  )
A.i-2B.2+iC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.椭圆$\frac{x^2}{25}+\frac{y^2}{9}$=1上一点P到左焦点距离为4,则P点的横坐标为-$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案