精英家教网 > 高中数学 > 题目详情
4.设△ABC的内角A,B,C的对边分别为a,b,c,且$\sqrt{3}$bsinA+acosB-2a=0.
(1)求B的值;
(2)若b=2$\sqrt{3}$,求ac的最大值.

分析 (1)在△ABC中,由条件利用正弦定理求得sin(B+$\frac{π}{6}$)=1,结合B的范围,由此求得 B 的值.
(2)利用余弦定理和基本不等式即可得出.

解答 (本题满分为12分)
解:(1)∵在△ABC中,由已知可得:2a=$\sqrt{3}$bsinA+acosB,
∴由正弦定理可得:2sinA=$\sqrt{3}$sinBsinA+sinAcosB,可得:2=$\sqrt{3}$sinB+cosB=2sin(B+$\frac{π}{6}$),
∴sin(B+$\frac{π}{6}$)=1,
∵B是三角形内角,B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{7π}{6}$),
∴B+$\frac{π}{6}$=$\frac{π}{2}$
∴B=$\frac{π}{3}$…6分
(2)由余弦定理可得b2=a2+c2-2accosB,
∵b=2$\sqrt{3}$,B=$\frac{π}{3}$,
∴(2$\sqrt{3}$)2=a2+c2-2accos60°=a2+c2-ac≥ac,当且仅当a=c时取等号.
∴ac≤12,当且仅当a=c时取等号,即ac的最大值为12…12分

点评 本题主要考查正弦定理、余弦定理的应用,考查了基本不等式等基础知识与基本技能方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数y=$\frac{1}{{{x^2}+1}}$的值域是(  )
A.(-∞,-1)B.(0,+∞)C.[1,+∞)D.( 0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,-1]时,f(x)=-(x+2)2,当x∈[-1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.336B.355C.1676D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.
(1)求证:AB∥平面EFGH,CD∥平面EFGH;
(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若全集U=R,函数y=$\sqrt{x-2}$+$\sqrt{x+1}$的定义域为A,函数y=$\sqrt{-{x^2}+2x+8}$的值域为B.
(I)求集合A,B;   
(II)求(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中,真命题是(  )
A.?x∈R,2x>x2B.若a>b,c>d,则 a-c>b-d
C.?x∈R,ex<0D.ac2<bc2是a<b的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$.
(1)判断函数f(x)的奇偶性;
(2)判断并证明f(x)的单调性;
(3)求关于x的不等式f(2x-1)+f(x+3)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在(-2,2)上的函数f(x)=-5x+x5,如果f(1+2a2)+f(a-2)>0,则实数a的取值范围为(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{1}{2}$)C.(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)D.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知a=6,b=$3\sqrt{2}$,A=45°,则B的大小为(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

同步练习册答案