精英家教网 > 高中数学 > 题目详情
11.已知$\overrightarrow a=({1,k}),\overrightarrow b=({2,3})$,若$\overrightarrow a$与$\overrightarrow b$平行,则k=$\frac{3}{2}$.

分析 利用向量共线的充要条件列出方程求解即可.

解答 解:$\overrightarrow a=({1,k}),\overrightarrow b=({2,3})$,若$\overrightarrow a$与$\overrightarrow b$平行,
可得2k=3,解得k=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查向量共线的充要条件的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln(2ax+1)+$\frac{{x}^{3}}{3}$-x2(a∈R)
(1)若y=f(x)在[2,+∞)上为增函数,求实数a的取值范围;
(2)当a=-$\frac{1}{2}$时,方程f(1-x)=$\frac{(1-x)^{3}}{3}$+$\frac{b}{x}$+x-1有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lg(1-x)+lg(1+x)+x4-2x2
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ) 设1-x2=t,把f(x)表示为关于t的函数g(t)并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在公差不为零的等差数列{an}中,a5=3a2-1,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=3${\;}^{{a}_{2n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知矩形ABCD是圆柱O1O2的轴截面,N在上底面的圆周O2上,AC、BD相交于点M;
(1)求证:CN⊥平面ADN;
(2)已知圆锥MO1和圆锥MO2的侧面展开图恰好拼成一个半径为2的圆,直线BC与平面CAN所成角的正切值为$\frac{{\sqrt{3}}}{6}$,求异面直线AB与DN所成角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出下列命题:
①设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围为[-1,1];
②A,B是抛物y2=2px(p>0)上的两点,且OA⊥OB,则A、B两点的横坐标之积$\frac{p^2}{4}$;
③斜率为1的直线l与椭圆$\frac{x^2}{4}+{y^2}=1$相交于A、B两点,则|AB|的最大值为$\frac{{4\sqrt{10}}}{5}$.
把你认为正确的命题的序号填在横线上①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系中,圆心坐标均为(2,2)的圆Ⅰ、圆Ⅱ、圆Ⅲ半径分别为4,2,1,直线y=$\frac{3}{4}$x+3与圆Ⅰ交于点A,B,点C在圆Ⅰ上,满足线段CA和线段CB与圆Ⅱ均有公共点,点P是圆Ⅲ上任意一点,则△APB与△APC面积之比的最大值为$\frac{3+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设命题A和命题B都含有同一个变量m,其中命题A成立时求得变量m的范围为集合P,命题B成立时求得变量m的范围为集合Q.如果要求“命题A成立是命题B成立的必要非充分条件”时,则集合P和集合Q的关系为Q?P.

查看答案和解析>>

同步练习册答案