精英家教网 > 高中数学 > 题目详情

【题目】如图.在四棱锥中,平面ABCD,且MN分别为棱PCPB的中点.

1)证明:ADMN四点共面,且平面ADMN

2)求直线BD与平面ADMN所成角的正弦值.

【答案】(1) 证明见解析;(2)

【解析】

1)先证,再证,即可得证;要证平面ADMN可通过求证PB垂直于ADMN中的两条交线来证明

(2)求直线BD与平面ADMN所成角,需要找出BD在平面ADMN的射影,可通过三垂线定理去进行证明

解:(1)证明因为MN分别为PCPB的中点,所以

又因为,所以.从而ADMN四点共面;

因为平面ABCD平面ABCD.所以

又因为,所以平面PAB,从而

因为,且NPB的中点,所以

又因为,所以平面ADMN

2)如图,连结DN

由(1)知平面ADMN

所以,DN为直线BD在平面ADMN内的射影,且

所以,即为直线BD与平面ADMN所成的角:

在直角梯形ABCD内,过CH,则四边形ABCH为矩形;

,在中,

所以,

中,

所以.

综上,直线BD与平面ADMN所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)lg(1x)lg(1x)x42x2.

(1)求函数f(x)的定义域;

(2)判断函数f(x)的奇偶性;

(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2007全运会上两名射击运动员甲、乙在比赛中打出如下成绩:

甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;

乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;

(1)用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩;

(2)分别计算两个样本的平均数和标准差,并根据计算结果估计哪位运动员的成绩比较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离,在某种路面上,某种型号的汽车的刹车距离sm)与汽车的车速vm/s)满足下列关系:n为常数,且),做了两次刹车实验,发现实验数据如图所示其中

(1)求出n的值;

(2)要使刹车距离不超过12.6米,则行驶的最大速度应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).

(1)求V=0的概率;

(2)求V的分布列及数学期望E(V).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地铁换乘站设有编号为的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:

安全出口编号

疏散乘客时间(

186

125

160

175

145

则疏散乘客最快的一个安全出口的编号是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧棱与底面垂直, ,点分别为的中点.

(1)证明: 平面

证明: 平面.

查看答案和解析>>

同步练习册答案