【题目】如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).
(1)求V=0的概率;
(2)求V的分布列及数学期望E(V).
科目:高中数学 来源: 题型:
【题目】如图
(1)证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.
(2)写出上述命题的逆命题,并判断其真假(不需要证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国人均读书本(包括网络文学和教科书),比韩国的本、法国的本、日本的本、犹太人的本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成段:,,,,,后得到如图所示的频率分布直方图.问:
(1)估计在这名读书者中年龄分布在的人数;
(2)求这名读书者年龄的平均数和中位数;
(3)若从年龄在的读书者中任取名,求这两名读书者年龄在的人数恰为的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若函数f(x)=ax2-x-1有且仅有一个零点, 求实数a的值.
(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图.在四棱锥中,,,平面ABCD,且.,,M、N分别为棱PC,PB的中点.
(1)证明:A,D,M,N四点共面,且平面ADMN;
(2)求直线BD与平面ADMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从1到100这100个自然数中,每次取出不同的两个数,使它们的和大于100,不同取法共有( )种.
A. 50 B. 100 C. 1275 D. 2500
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国共产党第十九次全国代表大会会议提出“决胜全面建成小康社会”.某地随着经济的发展,居民收入逐年增长,下表是该地一银行连续五年的储蓄存款(年底余额),如表1:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 |
储蓄存款(千亿元) | 5 | 6 | 7 | 9 | 12 |
为了计算的方便,工作人员将上表的数据进行了处理,,得到下表2:
时间代号 | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 4 | 7 |
(Ⅰ)求关于的线性回归方程;
(Ⅱ)求关于的回归方程;
(Ⅲ)用所求回归方程预测到2035年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中,.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本(万元)关于月产量(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com