精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是公差不为零的等差数列,a1=1,且a2 , a4 , a8成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:a1b1+a2b2+a3b3+…+anbn=2n+1 , n∈N* , 令cn= ,n∈N* , 求数列{cncn+1}的前n项和Sn

【答案】
(1)解:设等差数列{an}的公差为d,

∵a1=1,且a2,a4,a8成等比数列.

,即

解得d=0(舍)或d=1,

∴数列{an}的通项公式为an=a1+(n﹣1)d=n,即an=n.


(2)解:由

(n≥2),

两式相减得 ,即 (n≥2),


【解析】(1)利用等差数列与等比数列的通项公式即可得出;(2)利用递推式可得 (n≥2),再利用“裂项求和”即可得出.
【考点精析】解答此题的关键在于理解等差数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对数列的前n项和的理解,了解数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,底面ABCD为平行四边形,AB=3,AC=4,AD=5,SA⊥平面ABCD.

(1)证明:AC⊥平面SAB;
(2)若SA=2,求三棱锥A﹣SCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 + =1(a>b>0)的离心率为 ,且过点( ).
(1)求椭圆方程;
(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2 , 满足4k=k1+k2 , 试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数 在区间[﹣ ]上的图象时,列表并填入了部分数据,如表:

2x﹣

π

﹣π

0

π

x

f(x)


(1)请将上表数据补充完整,并在给出的直角坐标系中,画出f(x)在区间[﹣ ]上的图象;
(2)求f(x)的最小值及取最小值时x的集合;
(3)求f(x)在 时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动直线l:(3λ+1)x+(1﹣λ)y+6﹣6λ=0过定点P,则点P的坐标为 , 若直线l与x轴的正半轴有公共点,则λ的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域上既是奇函数又是增函数的是(
A.y=logax
B.y=x3+x
C.y=3x
D.y=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元? (服装厂售出一件服装的利润=实际出厂单价﹣成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:AE⊥BE;
(2)求三棱锥C﹣ADE的体积.

查看答案和解析>>

同步练习册答案