精英家教网 > 高中数学 > 题目详情
π
2
0
(1+sinx)dx
的计算结果是(  )
分析:利用微积分基本定理可求答案.
解答:解:
π
2
0
(1+sinx)dx
=(x-cosx)
|
π
2
0
=(
π
2
-0)-(0-1)=
π
2
+1

故选C.
点评:本题考查微积分基本定理的应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
3
求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选考题,请考生任选2题作答,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换曲线x2+4xy+2y2=1在二阶矩阵M=
1a
b1
的作用下变换为曲线x2-2y2=1,求M的逆矩阵M-1=
1-2
0  1
1-2
0  1

(2)选修4-4:坐标系与参数方程在曲线C1
x=1+cosθ
y=sinθ
(θ为参数),在曲线C1求一点,使它到直线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数)的距离最小,最小距离
1
1

(3)选修4-5:不等式选讲设函数f(x)=
|x+1|+|x-2|+a
.试求a的取值范围
{a|a≥-3}
{a|a≥-3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【选做题】在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1 几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.选修4-2 矩阵与变换
若点A(2,2)在矩阵M=
cosα-sinα
sinαcosα
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵.
C.选修4-4 坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,
曲线C1ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
(t∈R)交于A、B两点.求证:OA⊥OB.
D.选修4-5 不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③要得到函数y=sin(2x+
π
3
)
的图象,只要将y=sin2x的图象向左平移
π
3
单位;
④已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1}.
其中正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+sin
π
2
x,若有四个不同的正数xi满足f(xi)=M(M为常数),xi<8,(i=1,2,3,4),则x1+x2+x3+x4的值为(  )
A、10B、14
C、12D、12或20

查看答案和解析>>

同步练习册答案