精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1+sin
π
2
x,若有四个不同的正数xi满足f(xi)=M(M为常数),xi<8,(i=1,2,3,4),则x1+x2+x3+x4的值为(  )
A、10B、14
C、12D、12或20
分析:由f(x)=M 在两个周期之内有四个解,则在在一个周期内必有两个解,表示出四个解来相加可得.
解答:解:∵f(x)=M 在两个周期之内有四个解,
∴sin
π
2
x=-1+M在一个周期内有两个解精英家教网
当M-1>0时,四个根中其中两个关于x=1对称,另两个关于x=5对称,故其和为2×1+5×2=12.
 当M-1<0时,四个根中其中两个关于x=3对称,另两个关于x=7对称,故其和为2×3+7×2=20.
综上得:x1+x2+x3+x4=12或20.
故选:D.
点评:本题主要考查三角函数的周期性及三角方程有多解的特性,但都有相应的规律,与周期有关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案