精英家教网 > 高中数学 > 题目详情
已知为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是(   )
A.B.C.D.
C
解:设P(m,n ), PF1• PF2 =c2=(-c-m,-n)•(c-m,-n)=m2-c2+n2
∴m2+n2=2c2,n2=2c2-m2 ①.把P(m,n )代入椭圆x2 a2 +y2 b2 =1得  b2m2+a2n2=a2b2 ②,
把①代入②得 m2=a2b2-2a2c2 /b2-a2≥0,∴a2b2≤2a2c2,b2≤2c2,a2-c2≤2c2,∴c/ a ≥  .又  m2≤a2,∴a2b2-2a2c2 /b2-a2≤a2,∴a2(a2-2c2) b2-a2≤0,a2-2c2≥0,∴c/ a ≤.综上,  ≤c/ a ≤ ,故选 C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,两焦点之间的距离为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右顶点作直线交抛物线于A、B两点,
(1)求证:OA⊥OB;
(2)设OA、OB分别与椭圆相交于点D、E,过原点O作直线DE的垂线OM,垂足为M,证明|OM|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆(a>b>0)的左右焦点分别为F1,F2,P是椭圆上一点。PF1F2为以F2P为底边的等腰三角形,当60°<PF1F2120°,则该椭圆的离心率的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在△ABC中,B、C坐标分别为B (0,-4),C (0,4),且,顶点A
的轨迹方程是(      )
(A)x≠0)                (B)x≠0)   
(C)x≠0)                 (D)x≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△中,边长为边上的中线长之和等于.若以边中点为原点,边所在直线为轴建立直角坐标系,则△的重心的轨迹方程为:                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,线段AB的两个端点A、B分别在x轴,y轴上滑动,,点M是线段AB上一点,且点M随线段AB的滑动而运动.
(I)求动点M的轨迹E的方程
(II)过定点N的直线交曲线E于C、D两点,交y轴于点P,若的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
如图,椭圆的右焦点为,右准线为

(1)求到点和直线的距离相等的点的轨迹方程。
(2)过点作直线交椭圆于点,又直线于点,若
求线段的长;
(3)已知点的坐标为,直线交直线于点,且和椭圆的一个交点为点,是否存在实数,使得,若存在,求出实数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的右焦点与抛物线的焦点相同,且的离心率,又为椭圆的左右顶点,其上任一点(异于).
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线交直线于点,过作直线的垂线交轴于点,求的坐标;
(Ⅲ)求点在直线上射影的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,点所在的平面内运动且保持,则的最大值和最小值分别是(   )
A. B.10和2  C.5和1D.6和4

查看答案和解析>>

同步练习册答案