精英家教网 > 高中数学 > 题目详情
已知椭圆:的右焦点与抛物线的焦点相同,且的离心率,又为椭圆的左右顶点,其上任一点(异于).
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线交直线于点,过作直线的垂线交轴于点,求的坐标;
(Ⅲ)求点在直线上射影的轨迹方程.
(1) ;(2) ;(3) 
(1) 由题意知,易知椭圆方程为
(2)本小题的求解要注意利用平面几何的性质得到,另外要注意应用,点M在椭圆上等几何要素建立方程求解即可.
(3) 点在直线上射影即PQ与MB的交点H,由为直角三角形,设E为中点,则==,因此H点的轨迹是以E为圆心,半径为的圆去掉与x轴的交点.解:(Ⅰ)由题意知,故椭圆方程为..........3分

(Ⅱ)设则由图知,得,故.
,由得:.
在椭圆上,故,化简得,即...............8分
(Ⅲ)点在直线上射影即PQ与MB的交点H,由为直角三角形,设E为中点,则==,因此H点的轨迹方程为            ...................13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆),直线为圆的一条切线并且过椭圆的右焦点,记椭圆的离心率为
(1)求椭圆的离心率的取值范围;
(2)若直线的倾斜角为,求的大小;
(3)是否存在这样的,使得原点关于直线的对称点恰好在椭圆上.若存在,求出的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,点在圆上任意一点(点第一象限内),过点作圆的切线交椭圆于两点
(1)证明:
(2)若椭圆离心率为,求线段长度的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点,过的右焦点任作直线,设两点(异于的左、右顶点),再分别过点的切线,记相交于点.
(1)求椭圆的标准方程;
(2)证明:点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B为椭圆的左、右顶点,C(0,b),直线与X轴交于点D,与直线AC交于点P,且BP平分,则此椭圆的离心率为
A、  
B、  
C、  
D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左、右焦点分别为F1,F2,过F2轴的垂线与
椭圆的一个交点为P,若,则椭圆的离心率           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的焦距为,则实数          

查看答案和解析>>

同步练习册答案