| A. | $\sqrt{e}$ | B. | e2 | C. | e | D. | $\frac{e}{2}$ |
分析 求出原函数的导数,再分别讨论a=0,a<0,a>0的情况,从而得出ab的最大值.
解答 解:令f(x)=ex-ax-b,则f′(x)=ex-a,
若a=0,则f(x)=ex-b>-b,要使f(x)≥0,
则b≤0,此时ab=0;
若a<0,则f′(x)>0,函数f(x)函数单调增,当x→-∞时,f(x)→-∞,不可能恒有f(x)≥0;
若a>0,由f′(x)=ex-a=0,得极小值点x=lna,由f(lna)=a-alna-b≥0,得b≤a(1-lna),
ab≤a2(1-lna).
令g(a)=a2(1-lna).
则g′(a)=2a(1-lna)-a=a(1-2lna)=0,得极大值点a=${e}^{\frac{1}{2}}$,
而g(${e}^{\frac{1}{2}}$)=$\frac{e}{2}$,
∴ab的最大值为$\frac{e}{2}$.
故选:D.
点评 本题考查函数恒成立问题,考查了函数的单调性,训练了导数在求最值中的应用,渗透了分类讨论思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $±2\sqrt{2}$ | C. | 2 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -1 | C. | $1+2\sqrt{3}$ | D. | $1-2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(3)<f(1)<f(2) | B. | f(1)<f(2)<f(3) | C. | f(2)<f(1)<f(3) | D. | f(3)<f(2)<f(1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com