精英家教网 > 高中数学 > 题目详情
11.从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为$\frac{4m}{n}$.

分析 以面积为测度,建立方程,即可求出圆周率π的近似值.

解答 解:由题意,两数的平方和小于1,对应的区域的面积为$\frac{1}{4}$π•12,从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),对应的区域的面积为12
∴$\frac{m}{n}=\frac{\frac{1}{4}π•{1}^{2}}{{1}^{2}}$,∴π=$\frac{4m}{n}$.
故答案为:$\frac{4m}{n}$.

点评 古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1的左、右焦点分别为F1,F2,点P在椭圆上,若|PF2|=$\sqrt{2}$,则cos∠F1PF2=(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列4个结论:
①a∈{a};②∅∈{∅};③a∈∅;④a∉∅.
其中不正确结论的序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.3(π+1)B.4π+1C.π+$\frac{8}{3}$D.2π+$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.△ABC在空间直角坐标系中的位置及坐标如图所示,则AC边上的中线长为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知四点A(12,0),B(-4,0),C(0,-3),D(-3,-4),把坐标系平面沿y轴折为直二面角.

(Ⅰ)求证:BC⊥AD;
(Ⅱ)求平面ADO和平面ADC的夹角的余弦值;
(Ⅲ)求三棱锥C-AOD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的坐标方程为ρ=4sin(θ-$\frac{π}{6}$).
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆C及内部的公共点,求$\sqrt{3}$x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过点(1,2),且与直线x+2y+2=0垂直的直线方程为(  )
A.2x-y=0B.x-2y+3=0C.2x+y-4=0D.x+2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}的前n项和记为Sn,a1=1,Sn=an+1-2(n∈N*).
(1)求{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

同步练习册答案