精英家教网 > 高中数学 > 题目详情
19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.3(π+1)B.4π+1C.π+$\frac{8}{3}$D.2π+$\frac{10}{3}$

分析 由三视图可知:该几何体的后面是圆柱的一半,前面是一个三棱柱截去一个三棱锥.

解答 解:由三视图可知:该几何体的后面是圆柱的一半,前面是一个三棱柱截去一个三棱锥.
∴该几何体的体积V=$\frac{1}{2}×$π×12×4+$\frac{1}{2}×2×1×4$-$\frac{1}{3}×\frac{1}{2}×2×1$×2=2π+$\frac{10}{3}$.
故选:D.

点评 本题考查了圆柱与三棱柱、三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若函数y=x2-4x的定义域是{x|1≤x<5,x∈N},则其值域为(  )
A.[-3,5)B.[-4,5)C.{-4,-3,0}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,圆C的方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)把直线l化为直角坐标方程和圆C的方程化为普通方程;
(2)求圆C上的点到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1与$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1有相同的(  )
A.离心率B.焦距C.长轴长D.焦点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sinωπx,且函数f(x)的图象与y=-2的图象的相邻两交点的横坐标之差为2
(1)求函数f(x)的解析式;
(2)将函数f(x)的图象的横坐标扩大π倍得到函数g(x)的图象,若函数y=g(x+$\frac{π}{3}$)-m在[-$\frac{2π}{3}$,$\frac{5π}{6}$]上的最小值为2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设点P(1,-1)到直线(m+1)x+(2m-1)y-1-4m=0(m∈R)的距离为d,则d的取值范围为(  )
A.[0,1)B.[0,1]C.[0,$\sqrt{5}$)D.[0,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为$\frac{4m}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,设倾斜角为α的直线:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$,(t为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)相交于不同的两点A,B.以O为极点,Ox正半轴为极轴,两坐标系取相同的单位长度,建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若α=$\frac{π}{3}$,求线段|AB|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|-3<x<1},B={x|x2-2x≤0},则A∩B=(  )
A.{x|0<x<1}B.{x|0≤x<1}C.{x|-1<x≤1}D.{x|-2<x≤1}

查看答案和解析>>

同步练习册答案