分析 (1)利用递推关系与等比数列的通项公式即可得出.
(2)nan=n•2n-1.利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(1)∵Sn=an+1-2(n∈N*),∴Sn-1=an-2,相减可得:an=an+1-an,化为:an+1=2an,
∴数列{an}是等比数列,公比为2,首项为1.
∴an=2n-1.
(2)nan=n•2n-1.
∴数列{nan}的前n项和Tn=1+2×2+3×22+…+n•2n-1.
∴2Tn=2+2×22+…+(n-1)•2n-1+n•2n,
∴-Tn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n=(1-n)n•2n-1,
∴Tn=(n-1)•2n+1.
点评 本题考查了“错位相减法”、等比数列的求和公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<1} | B. | {x|0≤x<1} | C. | {x|-1<x≤1} | D. | {x|-2<x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b<c<a | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com