精英家教网 > 高中数学 > 题目详情
2.设$\overrightarrow a$=(1-cosα,$\sqrt{3}}$),$\overrightarrow b$=(sinα,3)且$\overrightarrow a$∥$\overrightarrow b$,则锐角α为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 由向量共线的坐标表示列三角等式,求出tanα的值,再由α为锐角得到α的值.

解答 解:∵$\overrightarrow a$=(1-cosα,$\sqrt{3}}$),$\overrightarrow b$=(sinα,3)且$\overrightarrow a$∥$\overrightarrow b$,
∴3-3cosα=$\sqrt{3}$sinα,
即2sin($α+\frac{π}{6}$)=$\sqrt{3}$.
又α为锐角,
∴$α+\frac{π}{6}$=$\frac{π}{3}$.∴α=$\frac{π}{6}$
故选:A.

点评 共线问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),则$\overrightarrow{a}$⊥$\overrightarrow{b}$?a1a2+b1b2=0,$\overrightarrow{a}$∥$\overrightarrow{b}$?a1b2-a2b1=0,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的坐标方程为ρ=4sin(θ-$\frac{π}{6}$).
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆C及内部的公共点,求$\sqrt{3}$x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,某公园内从点A处出发有两条道路AB,AC连接到南北方向的道路BC.从点A处观察点B和点C的方位角分别是∠PAB和∠PAC,且cos∠PAB=$\frac{7}{25}$,cos∠PAC=$\frac{3}{5}$,AB=2.5km.
(1)求AC和BC;
(2)现有甲乙二人同时从点A处出发,甲以5km/h的速度沿道路AC步行,乙以6km/h的速度沿A-B-C路线步行,问半小时后两人的距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}的前n项和记为Sn,a1=1,Sn=an+1-2(n∈N*).
(1)求{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=(sin A,cos A),$\overrightarrow{n}$=(1,-$\sqrt{3}$),$\overrightarrow{m}$⊥$\overrightarrow{n}$,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=$\sqrt{3}$(cos2x-sin2x)+4cos Asin xcos x(x∈[0,$\frac{π}{2}$])的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|x2-x>0},N={x|x≥1},则M∩N=(  )
A.{x|x≥1}B.{x|x>1}C.D.{x|x>1或x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}的前n项和为Sn,若数列{Sn}有唯一的最大项S3,Hn=S1+2S2+3S3+…+nSn,则(  )
A.S5•S6<0B.H5•H6<0
C.数列{an}、{Sn}都是单调递减数列D.H6可能是数列{Hn}最大项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.根据所给条件求直线的方程:
(1)直线过点(-4,0),倾斜角的正弦值为$\frac{\sqrt{10}}{10}$;
(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;
(3)直线过点(5,10),且到原点的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.我们知道,在△ABC中,若c2=a2+b2,则△ABC是直角三角形,现在请你研究,若cn=an+bn(n>2),则△ABC(  )
A.一定是锐角三角形B.可能是直角三角形
C.一定是钝角三角形D.可能是钝角三角形

查看答案和解析>>

同步练习册答案