精英家教网 > 高中数学 > 题目详情
14.已知等差数列{an}的前n项和为Sn,若数列{Sn}有唯一的最大项S3,Hn=S1+2S2+3S3+…+nSn,则(  )
A.S5•S6<0B.H5•H6<0
C.数列{an}、{Sn}都是单调递减数列D.H6可能是数列{Hn}最大项

分析 由等差数列{an}的前n项和为Sn,数列{Sn}有唯一的最大项S3,可得:公差d<0,a1>0,a1,a2,a3>0,a4<0.
A.由S5=5a3>0,S6=3(a3+a4)与0的大小关系不确定,即可判断出正误;
B.H5=S1+2S2+3S3+4S4+5S5>0,H6=S1+2S2+3S3+4S4+5S5+6S6,由A可知:S6=3(a3+a4)与0的大小关系不确定,即可判断出正误.
C.数列{an}是单调递减数列,而数列{Sn}在n≤3时单调递增,n≥4时单调递减.
D.由a3+a4与0的大小关系不确定即可判断出结论.

解答 解:∵等差数列{an}的前n项和为Sn,数列{Sn}有唯一的最大项S3
∴公差d<0,a1>0,a1,a2,a3>0,a4<0.
A.由S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=5a3>0,S6=$\frac{6({a}_{1}+{a}_{6})}{2}$=3(a3+a4)与0的大小关系不确定,可知A不正确;
B.H5=S1+2S2+3S3+4S4+5S5>0,H6=S1+2S2+3S3+4S4+5S5+6S6
由A可知:S6=3(a3+a4)与0的大小关系不确定,H5•H6与0的大小关系也不确定,因此不正确.
C.数列{an}是单调递减数列,而数列{Sn}在n≤3时单调递增,n≥4时单调递减.
D.若a3+a4>0,则S6>0,而S7=$\frac{7({a}_{1}+{a}_{7})}{2}$=7a4<0,因此H6有可能是数列{Hn}最大项.
故选:D.

点评 本题考查了等差数列的通项公式及求和公式性质、不等式的性质,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若规定:
①{m}表示大于m的最小整数,例如{3}=4,{-2.4}=-2
②[m]表示不大于m的最大整数,例如:[5]=5,[-3.6]=-4,则使等式2{x}-[x]=4成立的整数x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足$\left\{\begin{array}{l}x-y-2≤0\\ x-3y≥0\\ y≥0\end{array}\right.$,则z=x-2y的最大值为(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$\overrightarrow a$=(1-cosα,$\sqrt{3}}$),$\overrightarrow b$=(sinα,3)且$\overrightarrow a$∥$\overrightarrow b$,则锐角α为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线$\sqrt{3}$x+y+$\sqrt{3}$-1=0截圆x2+y2-2x-2y-2=0所得的劣弧所对的圆心角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=ax2-lnx,设曲线y=f(x)在x=t(0<t<2)处的切线为l.
(1)试讨论函数f(x)的单调性;
(2)当a=-$\frac{1}{8}$时,证明:当x∈(0,2)时,曲线y=f(x)与l有且仅有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}是公差不为0的等差数列,Sn为其前n项的和,满足:a22+a32=a42+a52,S7=7.
(1)求数列{an}的通项公式及前n项的和Sn
(2)设数列{bn}满足bn=2${\;}^{{a}_{n}}$,其前n项的和为Tn,当n为何值时,有Tn>512.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x∈R|ax2-2x-1=0},B={x|y=$\sqrt{x}$},A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在数列{an}中,a1=1,an=n•an-1,n=2,3,4,….
(Ⅰ)计算a2,a3,a4,a5的值;
(Ⅱ)根据计算结果,猜想{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案