精英家教网 > 高中数学 > 题目详情
4.在数列{an}中,a1=1,an=n•an-1,n=2,3,4,….
(Ⅰ)计算a2,a3,a4,a5的值;
(Ⅱ)根据计算结果,猜想{an}的通项公式,并用数学归纳法加以证明.

分析 (Ⅰ)利用已知条件通过n=2,3,4,5直接计算a2,a3,a4,a5的值,
(Ⅱ)根据(Ⅰ)的计算结果,猜想的通{an}项公式,用数学归纳法的证明步骤直接证明即可.

解答 解:(Ⅰ)a1=1,an=n•an-1
可得n=2时,a2=2;n=3时,a3=6;
a4=24,a5=120
(Ⅱ)猜想 an=n!.
证明:①当n=1时,由已知,a1=1!=1,猜想成立.
②假设当n=k(k∈N*)时猜想成立,即ak=k!.
则n=k+1时,ak+1=(k+1)ak=(k+1)k!=(k+1)!.
所以 当n=k+1时,猜想也成立.
根据 ①和 ②,可知猜想对于任何n∈N*都成立

点评 本题考查数列递推关系式以及通项公式的应用,数学归纳法的证明方法的应用,考查计算能力与逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}的前n项和为Sn,若数列{Sn}有唯一的最大项S3,Hn=S1+2S2+3S3+…+nSn,则(  )
A.S5•S6<0B.H5•H6<0
C.数列{an}、{Sn}都是单调递减数列D.H6可能是数列{Hn}最大项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.当x>1时.求y=2+3x+$\frac{4}{x-1}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.我们知道,在△ABC中,若c2=a2+b2,则△ABC是直角三角形,现在请你研究,若cn=an+bn(n>2),则△ABC(  )
A.一定是锐角三角形B.可能是直角三角形
C.一定是钝角三角形D.可能是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为(  )
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是公差为-2的等差数列,如果a1和a5的等差中项为-1,那么a2=(  )
A.-3B.-2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和Sn满足Sn=3-2an,(n∈N*).
(1)证明:{an}是等比数列;
(2)证明:对于任意正整数n,都有1≤Sn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,直线AB为⊙O的切线,切点为B,点C、D在圆上,DB=DC,作BE⊥BD交圆于点E
(1)证明:∠CBE=∠ABE;
(2)设⊙O的半径为2,BC=2$\sqrt{3}$,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设0<b<a<1,c>1,则(  )
A.ab<b2<bcB.alogbc<blogacC.abc>bacD.logac<logbc

查看答案和解析>>

同步练习册答案