分析 根据题意,画出图形,作出侧棱PA与底面ABC所成的角,利用三角形的边角关系求出对应的余弦值.
解答
解:如图所示,
三棱锥S-ABC中所有棱长都相等且为a,可得AB=PA=a,
作PO⊥平面ABC,垂足为O,
连接AO,并延长交BC于点D,
∴∠PAD是PA与平面ABC所成的角,
且O是正三角形ABC的中心;
∴AD=$\frac{\sqrt{3}}{2}$AB=$\frac{\sqrt{3}}{2}$a,
∴AO=$\frac{2}{3}$AD=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$a=$\frac{\sqrt{3}}{3}$a,
∴cos∠PAD=$\frac{AO}{PA}$=$\frac{\sqrt{3}}{3}$,
即侧棱PA与底面ABC所成角的余弦值为:$\frac{\sqrt{3}}{3}$.
点评 本题考查了直线与平面所成的角的计算问题,也考查了空间想象能力与三角形边角关系的计算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线BD1与直线B1C所成的角为$\frac{π}{2}$ | |
| B. | 直线B1C与直线A1C1所成的角为$\frac{π}{3}$ | |
| C. | 线段BD1在平面AB1C内的射影是一个点 | |
| D. | 线段BD1恰被平面AB1C平分 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一定是锐角三角形 | B. | 可能是直角三角形 | ||
| C. | 一定是钝角三角形 | D. | 可能是钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com