精英家教网 > 高中数学 > 题目详情
已知关于x的方程ax2+2x+1=0至少有一负根,求a的取值范围.
分析:分别考虑二次项系数a=0,a≠0,利用二次方程的根与系数关系及一次方程分别检验方程根的存在情况,可求a的范围
解答:解:(1)当a=0时,方程变为2x+1=0,有一负根x=-
1
2
,满足题意
(2)当a<0时,△=4-4a>0,方程的两根满足x1x2=
1
a
<0
,此时有且仅有一个负根,满足题意
(3)当a>0时,由方程的根与系数关系可得,
-
2
a
<0
1
a
>0

∴方程若有根,则两根都为负根,而方程有根的条件△=4-4a≥0
∴0<a≤1
综上可得,a≤1
点评:本题主要考查了方程的根的存在情况的讨论,解题中不要漏掉a=0的考虑,另外还要注意:至少有一负根对方程根的个数的要求
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=kx,(k≠0)且满足f(x+1)•f(x)=x2+x,函数g(x)=ax,(a>0且a≠1).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)为R上的增函数,h(x)=
f(x)+1
f(x)-1
(f(x)≠1)
,问是否存在实数m使得h(x)的定义域和值域都为[m,m+1]?若存在,求出m的值;若不存在,请说明理由;
(Ⅲ)已知关于x的方程g(2x+1)=f(x+1)•f(x)恰有一实数解为x0,且x0∈(
1
4
1
2
)
求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,已知AB,CD是圆O的两条弦,且AB是线段CD的 垂直平分线,若AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M=
21
1a
的一个特征值是3,求直线x-2y-3=0在M作用下的新直线方程.
C.选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系xOy中,已知曲线C的参数方程是
x=cosα
y=sinα+1
(α是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲(本小题满分10分)
已知关于x的不等式|ax-1|+|ax-a|≥1的解集为R,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+ax+b=0的两根均在区间(-1,1)内,则
a+b-2
a+1
的取值范围是
(-∞,
1
3
) ∪(3,+∞)
(-∞,
1
3
) ∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州二模)已知函数f(x)=ax2+bx+c和函数g(x)=ln(1+x2)+ax(a<0).
(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)已知关于x的方程f(x)=x没有实数根,求证方程f(f(x))=x也没有实数根;
(Ⅲ)证明:(1+
1
22
)(1+
1
42
)(1+
1
82
)…(1+
1
22n
)<e(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•徐汇区二模)已知关于x的方程x2-ax+ab=0,其中a,b为实数,且a≠0.
(1)若x=1-
3
i (i
为虚数单位)是该方程的一个根,求a,b的值;
(2)当该方程没有实数根时,证明:
b
a
1
4

查看答案和解析>>

同步练习册答案