精英家教网 > 高中数学 > 题目详情
(2008•徐汇区二模)已知关于x的方程x2-ax+ab=0,其中a,b为实数,且a≠0.
(1)若x=1-
3
i (i
为虚数单位)是该方程的一个根,求a,b的值;
(2)当该方程没有实数根时,证明:
b
a
1
4
分析:(1)由已知,得另一根为x′=1+
3
i
,利用一元二次方程根与系数的关系求出a和b的值
(2)方程没有实数根,则△<0,化简后再证明.
解答:解:(1)根据一元二次方程有虚数解时,两根互为共轭虚数.由x=1-
3
i
,得另一根为x′=1+
3
i

由韦达定理得x+x′=a=2,ab=x•x′=(1-
3
i)(1+
3
i)
=4,b=2.----------------(6分)
(2)方程没有实数根 则由△=a2-4ab<0⇒1-
4b
a
<0⇒
b
a
1
4
----------(12分)
点评:本题考查一元二次方程解,及根与系数的关系.若一元二次方程有虚数解,则两根互为共轭虚数,且韦达定理仍然成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•徐汇区二模)已知整数对的数列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第24个数对是
(3,5)
(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•徐汇区二模)(1-i)2•i=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•徐汇区二模)如图直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,∠ABC=90°,AC=2,D是AA1的中点
(1)求三棱柱ABC-A1B1C1的体积V;
(2)求C1D与上底面所成角的大小.(用反三角表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•徐汇区二模)设集合M={(x,y)|x2-y2=1,x∈R,y∈R}N={(x,y)|y=
x2
+1,x∈R,y∈R}
,则集合M∩N中元素的个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•徐汇区二模)正方体ABCD-A1B1C1D1中,异面直线BD1与AA1所成的角的大小是
arctg
2
arctg
2

查看答案和解析>>

同步练习册答案