精英家教网 > 高中数学 > 题目详情
11.点P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,PA=8,在△ABC中,底边BC=6,AB=5,则P到BC的距离为(  )
A.$4\sqrt{5}$B.$\sqrt{3}$C.$3\sqrt{3}$D.2$\sqrt{3}$

分析 取BC的中点D,连接AD,PD,则AD⊥BC,PD⊥BC,求出PD,即为所求.

解答 解:取BC的中点D,连接AD,PD,则AD⊥BC,PD⊥BC,
∵BC=6,AB=5,
∴AD=4,
∵PA=8,∴PD=$\sqrt{16+64}$=4$\sqrt{5}$,
故选A.

点评 本题考查点线距离的计算,考查线面垂直,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.8次投篮中,投中3次,其中恰有2次连续命中的情形有30种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于集合M,N,定义:M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).设集合M={y|y=x2-4x+3,x∈R},N={y|y=-2x,x∈R},则M⊕N=(  )
A.(-∞,-1)∪[0,+∞)B.[-1,0)C.(-1,0]D.(-∞,-1]∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x3+x+1(x∈R),若f(a)=2,则f(-a)的值为(  )
A.3B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是边长为2的正方形,PD=DC,E,F分别是AB,PB的中点.
(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使FG⊥平面PCB,并证明你的结论;
(3)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?a∈(0,1),直线(2x-1)x+ylga+1=0的斜率k>0”是真命题(填“真”或“假”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程mx2+(m+1)y2=m(m+1)(m∈R)表示的曲线不可能是(  )
A.直线B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|2x+1|-|x|-2.
(1)解不等式f(x)≥0;
(2)若存在实数x,使得f(x)-a≤|x|,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a=20.5,b=logπ3,c=-log23,则(  )
A.a<c<bB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

同步练习册答案