如图,在棱长为
的正方体
中,点
是棱
的中点,点
在棱
上,且满足
.![]()
(1)求证:
;
(2)在棱
上确定一点
,使
、
、
、
四点共面,并求此时
的长;
(3)求平面
与平面
所成二面角的余弦值.
(1)详见解析;(2)
;(3)
.
解析试题分析:本题有两种方法,第一种是传统方法:(1)连接
,先由正方体的性质得到
,以及
平面
,从而得到
,利用直线与平面垂直的判定定理可以得到
平面
,于是得到
;(2)假设四点
、
、
、
四点共面,利用平面与平面平行的性质定理得到
,
,于是得到四边形
为平行四边形,从而得到
的长度,再结合勾股定理得到
的长度,最终得到
的长度;(3)先延长
、
交于点
,连接
,找出由平面
与平面
所形成的二面角的棱
,借助
平面
,从点
在平面
内作
,连接
,利用三垂线法得到
为平面
与平面
所形成的二面角的的平面角,然后在直角
中计算
的余弦值;
第二种方法是空间向量法:(1)以点
为坐标原点,
、
、
所在直线分别为
轴、
轴、
轴建立空间直角坐标系,确定
与
的坐标,利用
来证明
,进而证明![]()
;(2)先利用平面与平面平行的性质定理得到
,然后利用空间向量共线求出点
的坐标,进而求出
的长度;(3)先求出平面
和平面
的法向量,结合图形得到由平面
和平面
所形成的二面角为锐角,最后再利用两个平面的法向量的夹角来进行计算.
试题解析:(1)如下图所示,连接
,![]()
由于
为正方体,所以四边形
为正方形,所以
,
且
平面
,
,
,
平面
,
平面
,
;
(2)如下图所示,假设
、
、
、
科目:高中数学 来源: 题型:解答题
如图所示,已知三棱柱ABC
A1B1C1,![]()
(1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;
(2)若三棱柱ABC
A1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在直三棱柱ABCA1B1C1中,D、E分别为AA1、CC1的中点,AC⊥BE,点F在线段AB上,且AB=4AF.若M为线段BE上一点,试确定M在线段BE上的位置,使得C1D∥平面B1FM.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四边形EFGH所在平面为三棱锥A-BCD的一个截面,四边形EFGH为平行四边形.![]()
(1)求证:AB∥平面EFGH,CD∥平面EFGH.
(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥P-ABCD的底面为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
AB=1,M是PB的中点.![]()
(1)求证:AM=CM;
(2)若N是PC的中点,求证:DN∥平面AMC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.![]()
(1)求证:AB∥平面CDE;
(2)求证:平面ABCD⊥平面ADE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.![]()
(1)求证:OM∥平面PAB;
(2)求证:平面PBD⊥平面PAC;
(3)当四棱锥P-ABCD的体积等于
时,求PB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com