如图所示,已知三棱柱ABCA1B1C1,
(1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.
科目:高中数学 来源: 题型:解答题
如图,四棱锥中,底面是平行四边形,,平面,,,是的中点.
(1)求证:平面;
(2)若以为坐标原点,射线、、分别是轴、轴、轴的正半轴,建立空间直角坐标系,已经计算得是平面的法向量,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面是矩形,,,,是棱的中点.
(1)求证:平面;
(2)求证:平面;
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1;
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.
(1)求证:BF∥平面A′DE;
(2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.
(1)求证:MN∥平面AA1C1C;
(2)若AC=AA1,求证:MN⊥平面A1BC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.
(1)求证:;
(2)在棱上确定一点,使、、、四点共面,并求此时的长;
(3)求平面与平面所成二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com