如图,四棱锥中,底面是平行四边形,,平面,,,是的中点.
(1)求证:平面;
(2)若以为坐标原点,射线、、分别是轴、轴、轴的正半轴,建立空间直角坐标系,已经计算得是平面的法向量,求平面与平面所成锐二面角的余弦值.
(1)参考解析;(2)
解析试题分析:(1)需证明平面,转化为证明AD⊥AC,AD⊥PA.因为PA垂直平面ABCD,由题意可得AD⊥AC,AD⊥PA显然成立,即可得结论.
(2)如图建立空间直角坐标系,因为是平面的法向量,所以求出平面PAF的法向量,再根据两平面的法向量的夹角的余弦值,即可得到平面与平面所成锐二面角的余弦值,
试题解析:. (1) 证明方法一:四边形是平行四边形,平面,又,,
平面.
方法二:证得是平面的一个法向量,平面.
(2)通过平面几何图形性质或者解线性方程组,计算得平面一个法向量为,
又平面法向量为,所以
所求二面角的余弦值为.
考点:1.线面垂直的证明2.二面角.3.空间向量的运算.4.运算的能力.
科目:高中数学 来源: 题型:解答题
已知正四棱柱中,是的中点.
(1)求证:平面;
(2)求证:;
(3)在线段上是否存在点,当时,平面平面?若存在,求出的值并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱中,平面,,,.以
,为邻边作平行四边形,连接和.
(1)求证:∥平面 ;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若
不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱中,,顶点在底面上的射影恰为点,.
(1)证明:平面平面;
(2 )若点为的中点,求出二面角的余弦值.
(1)证明:平面平面;
(2)若点为的中点,求出二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知三棱柱ABCA1B1C1,
(1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com