如图,三棱柱
中,
平面
,
,
,
.以
,
为邻边作平行四边形
,连接
和
.![]()
(1)求证:
∥平面
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点
,使平面
与平面
垂直?若存在,求出
的长;若
不存在,说明理由.
科目:高中数学 来源: 题型:解答题
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形. ![]()
(1)求证DM∥平面APC;
(2)求证平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆锥母线长为6,底面圆半径长为4,点
是母线
的中点,
是底面圆的直径,底面半径
与母线
所成的角的大小等于
.![]()
(1)当
时,求异面直线
与
所成的角;
(2)当三棱锥
的体积最大时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥
中,底面
是平行四边形,
,
平面
,
,
,
是
的中点.![]()
(1)求证:
平面
;
(2)若以
为坐标原点,射线
、
、
分别是
轴、
轴、
轴的正半轴,建立空间直角坐标系,已经计算得
是平面
的法向量,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点,![]()
(1).求证:D1E⊥A1D;
(2).在线段AB上是否存在点M,使二面角D1-MC-D的大小为
?,若存在,求出AM的长,若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段
上,B1E=3EC1,AC=BC=CC1=4.![]()
(1)求证:BC⊥AC1;
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com