精英家教网 > 高中数学 > 题目详情

如图,直三棱柱中,
中点,上一点,且.
(1)当时,求证:平面
(2)若直线与平面所成的角为,求的值.

(1)详见解析;(2) .

解析试题分析:由于两两互相垂直,故可以为坐标轴建立空间直角坐标系,然后利用空间向量求解.(1)建立空间直角坐标系如图所示,求出向量,再数量积,只要它们的数量积等于0即可.(2)首先求出平面的一个法向量,由直线与平面所成角的公式及题设可得,解这个方程即得.

试题解析:(1)建立空间直角坐标系如图所示,则


              3分
 
平面;    6分
(2)由题知

平面的一个法向量为    9分

  解得.    13分
考点:1、空间直线与平面的位置关系;2、空间直线与平面所成的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)(2011•福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.

(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB=AD,∠BAD=90°,M,N,G分别是BD,BC,AB的中点,将等边△BCD沿BD折叠到△BC′D的位置,使得AD⊥C′B.
(1)求证:平面GNM∥平面ADC′.
(2)求证:C′A⊥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正四棱柱中,的中点.
(1)求证:平面
(2)求证:
(3)在线段上是否存在点,当时,平面平面?若存在,求出的值并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱是直棱柱,.点分别为的中点.

(1)求证:平面;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,平面.以
为邻边作平行四边形,连接

(1)求证:∥平面 ;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若
不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,,顶点在底面上的射影恰为点
(1)证明:平面平面
(2 )若点的中点,求出二面角的余弦值.

(1)证明:平面平面
(2)若点的中点,求出二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱的底面边长是,侧棱长是的中点.

(1)求证:∥平面
(2)求二面角的大小;
(3)在线段上是否存在一点,使得平面平面,若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案