精英家教网 > 高中数学 > 题目详情

【题目】已知命题;命题q:函数有两个零点.

1)若为假命题,求实数的取值范围;

2)若为真命题,为假命题,求实数的取值范围.

【答案】1;(2

【解析】

先分别求出p为真、q为真时,m的取值范围,(1)若为假命题,可知pq均为假命题,进而可求得m的取值范围;(2)若为真命题,为假命题,可知pq一真一假,进而可求得m的取值范围.

p为真,令,问题转化为求函数的最小值,

,解得

函数上单调递减,在上单调递增,

,故

q为真,则,即

1)若为假命题.则pq均为假命题,实数m的取值范围为.

2)若为真命题,为假命题,则pq一真一假.

pq假,则实数m满足,即

pq真,则实数m满足

综上所述,实数m的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且.

1)求的解析式;

2)设函数,当时,求的最小值;

3)设函数,若对任意,总存在,使得成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次人才招聘会上,有一家公司的招聘员告诉你,我们公司的收入水平很高”“去年,在50名员工中,最高年收入达到了200万,员工年收人的平均数是10",而你的预期是获得9万元年薪.

1)你是否能够判断年薪为9万元的员工在这家公司算高收入者?

2)如果招聘员继续告诉你,员工年收入的变化范围是从3万到200,这个信息是否足以使你作出自己是否受聘的决定?为什么?

3)如果招聘员继续给你提供了如下信息,员工收人的第一四分位数为4.5万,第三四分位数为9.5万,你又该如何使用这条信息来作出是否受聘的决定?

4)根据(3)中招聘员提供的信息,你能估计出这家公司员工收入的中位数是多少吗?为什么平均数比估计出的中位数高很多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=3ax22a+cx+ca0acR

1)设ac0,若fx)>c22c+ax[1+∞]恒成立,求c的取值范围;

2)函数fx)在区间(01)内是否有零点,有几个零点?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,//为正三角形. 若,且与底面所成角的正切值为.

(1)证明:平面平面

(2)是线段上一点,记,是否存在实数,使二面角的余弦值为若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起照合影像(排成一排).

(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?

(2)要求灰太狼、红太狼不相邻,有多少种排法?

(3)记灰太狼和红太狼之间的喜羊羊家族的成员个数为,求的概率分布表和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图设计一幅矩形宣传画,要求画面面积为4840,画面上下边要留8cm空白,左右要留5cm空白,怎样确定画面高与宽的尺寸,才能使宣传画所用纸张面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-5:不等式选讲】

已知函数

(Ⅰ)求不等式

(Ⅱ)若的图像与直线围成图形的面积不小于14,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆C上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆CBD两点,且ABD三点互不重合.

1)求椭圆C的方程;

2)若分别为直线ABAD的斜率,求证:为定值。

查看答案和解析>>

同步练习册答案