精英家教网 > 高中数学 > 题目详情
已知集A={(x,y)||x|≤1,|y|≤1,x,y∈R},B={(x,y)|(x-a)2+(y-b)2≤1,x,y∈R,(a,b)∈A},则集合B所表示图形的面积是
 
考点:圆的一般方程
专题:计算题,直线与圆
分析:由题意,集合B所表示图形是四个半径为1,圆心角为90°的扇形,加上四个长为2,宽为1的长方形,再加上边长为2的正方形,即可求集合B所表示图形的面积.
解答: 解:由题意,集合B所表示图形是四个半径为1,圆心角为90°的扇形,加上四个长为2,宽为1的长方形,再加上边长为2的正方形,所以集合B所表示图形的面积是4×2×1+2×2+π=12+π.
故答案为:12+π.
点评:本题考查圆的一般方程,考查面积的计算,确定集合B所表示图形是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点A(1,0),B为x轴负半轴上的动点,以AB为边作菱形ABCD,使其两对角线的交点H恰好落在y轴上.
(1)求动点D的轨迹E的方程;
(2)若四边形MPNQ的四个顶点都在曲线E上,M、N关于x轴对称,曲线E在点M处的切线为l,且PQ∥l.
①证明:直线PN与QN的斜率之和为定值;
②当点M的横坐标为
3
4
,纵坐标大于0,∠PNQ=60°,求四边形MPNQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足约束条件
x-y+2≥0
x-5y+10≤0
x+y-8≤0
,则目标函数z=3x-4y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

十二届全国人大二次会议上,李克强总理提出“以雾霾频发的特大城市和区域为重点,以细颗粒物PM2.5和可吸入颗粒物PM10为突破口…”治理污染,“要像对贫困宣战一样,坚决向污染宣战”,其中总理提到的“PM2.5”是指大气中直径小于或等于2.5微米的颗粒物,也称为人肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米-75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某市2013年全年每天的PM2.5监测值数据中随机地抽取12天的数据作为样本,监测值频数如茎叶图所示(十位为茎,个位为叶):
(1)求空气质量为超标的数据的平均数与方差;
(2)在空气质量为二级的数据中任取2个,求这2个数据的和小于100的概率;
(3)以这12天的PM2.5日均值来估计2013年的空气质量状况,则2013年(按366天算)中平均有多少天的空气质量达到一级或二级.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈(0,1),函数f(x)=x2+x+n有零点的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:
①若α⊥β,m⊥α,则m∥β;       ②若m⊥α,m⊥β,则α∥β;
③若m∥α,m⊥n,则n⊥α;       ④若m∥α,m?β,则α∥β.
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设A为圆周上一点,在圆周上等可能地任取一点与A连接,则弦长超过半径
2
倍的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=|2sinx+m|(m为常数且m∈R),有下列结论:
①若m=0,则函数f(x)的最小正周期为π;
②如果函数f(x)的最小正周期为2π,则m>0;
③函数f(x)图象的对称轴方程式x=kπ+
π
2
(k∈Z);
④存在常数m、k使得函数g(x)=f(x)-k(x>0)的零点从小到大排列成公差为2π的等差数列;
⑤存在唯一的一组常数m、k,使得函数g(x)=f(x)-k(x>0)的零点从小到大排列成公差为π的等差数列;
其中正确结论的序号为
 
(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,已知a=
3
,b=1,C=30°,则△ABC的面积为(  )
A、
3
2
B、
3
C、
3
4
D、
3
4

查看答案和解析>>

同步练习册答案