精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
a
x

(1)当a>0时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为
3
2
,求a的值.
分析:(1)确定函数的定义域,根据f′(x)>0,可得f(x)在定义域上的单调性;
(2)求导函数,分类讨论,确定函数f(x)在[1,e]上的单调性,利用f(x)在[1,e]上的最小值为
3
2
,即可求a的值.
解答:解:(1)函数的定义域为(0,+∞),且f′(x)=
x+a
x2

∵a>0,∴f′(x)>0
∴f(x)在定义域上单调递增;
(2)由(1)知,f′(x)=
x+a
x2

①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数
∵f(x)在[1,e]上的最小值为
3
2

∴f(x)min=f(1)=-a=
3
2

∴a=-
3
2
(舍去)
②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,
∴f(x)min=f(e)=1-
a
e
=
3
2
,∴a=-
e
2
(舍去).
③若-e<a<-1,令f′(x)=0,得x=-a.
当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;
当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,
∴f(x)min=f(-a)=ln(-a)+1=
3
2
,∴a=-
e

综上可知:a=-
e
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案