精英家教网 > 高中数学 > 题目详情
已知命题p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,命题q:y=(2a-1)x为减函数,若p且q为真命题,则a的取值范围是(  )
A、a≤
2
3
B、0<a<
1
2
C、
1
2
<a≤
2
3
D、
1
2
<a<1
分析:由p且q为真命题,故p和q均为真命题,我们可根据函数的性质,分别计算出p为真命题时,参数a的取值范围及分别计算出q为真命题时,参数a的取值范围,求其交集即可.
解答:解:命题p等价于
3a
2
≤1
,3a≤2,即a≤
2
3

由y=(2a-1)x为减函数得:0<2a-1<1即
1
2
<a<1

又因为p且q为真命题,所以,p和q均为真命题,
所以取交集得
1
2
<a≤
2
3

故选C.
点评:(1)由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p 真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.(2)可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:关于x的不等式x2+(a-1)x+1≤0的解集为∅,命题q:方程
x2
2
+
y2
a
=1表示焦点在y轴上的椭圆,若命题¬q为真命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-ax+4=0有实根,命题q:关于x函数y=2x2+ax+4在[3,+∞)上为增函数,若“p或q”为真命题,“p且q”为假命题,则实数a取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式x2-2x-a>0解集为R;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“p且q”为假命题,“p或q”为真命题,则实数a的取值范围为
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“关于x的方程x2-ax+a=0无实根”和命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调.如果命题p∨q是假命题,那么,实数a的取值范围是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-2x+a=0有实根,命题q:函数f(x)=(a+1)x+2是减函数,若p∨q是真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案