精英家教网 > 高中数学 > 题目详情
7.研究函数f(x)=x-$\frac{{a}^{2}}{x}$,(x≠0常数a≠0)的定义域、奇偶性、单调性、最值、值域、零点,并任选一个你所写出的单调区间进行证明.

分析 由分式分母不为0,可得定义域,由奇偶性的定义,可得奇函数;再由导数大于0,可得单调区间和值域;由f(x)=0,可得零点;再由单调性的定义即可得证.

解答 解:函数f(x)=x-$\frac{{a}^{2}}{x}$的定义域为{x|x≠0,x∈R},
由f(-x)=-x+$\frac{{a}^{2}}{x}$=-(x-$\frac{{a}^{2}}{x}$)=-f(x),
可得f(x)为奇函数;
由f′(x)=1+$\frac{{a}^{2}}{{x}^{2}}$>0,可得f(x)的增区间为(-∞,0),(0,+∞);
函数f(x)在定义域内无最值;函数的值域为R;
由f(x)=0,可得x=±a,
即有函数的零点为±a.
证明:设0<m<n,f(m)-f(n)=(m-$\frac{{a}^{2}}{m}$)-(n-$\frac{{a}^{2}}{n}$)
=(m-n)(1+$\frac{{a}^{2}}{mn}$),
由0<m<n,可得m-n<0,mn>0,1+$\frac{{a}^{2}}{mn}$>0,
即有f(m)-f(n)<0,
则f(x)在(0,+∞)递增.

点评 本题考查函数的性质和运用,考查函数的单调性的证明,考查推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.奇函数f(x)是定义域为R的周期函数,其周期为4,当x∈(-2,0)时f(x)=2x,f(2012)-f(2011)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.点P(-3,0)是圆C:x2+y2-6x-55=0内一定点,动圆M与已知圆相内切且过P点,则圆心M的轨迹方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,an=$\frac{1}{2n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用logax,logay,logaz表示下列各式.
(1)logax2y3z;
(2)logax2yz-3
(3)loga$\frac{1}{xyz}$;
(4)loga$\root{3}{{x}^{2}{y}^{-1}z}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若sinθ•cosθ<0,|cosθ|=cosθ,则点P(tanθ,cosθ)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简
(1)$\sqrt{1-si{n}^{2}440°}$
(2)$\frac{\sqrt{1-2sin10°cos10°}}{sin10°-\sqrt{1-si{n}^{2}10°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC的三个顶点的坐标分别为A(3,4),B(5,2),C(-1,-4),则这个三角形是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-1,4),$\overrightarrow m$=$\overrightarrow a$-λ$\overrightarrow b$,$\overrightarrow n$=2$\overrightarrow a$-$\overrightarrow b$,若$\overrightarrow m$∥$\overrightarrow n$,则λ=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案