精英家教网 > 高中数学 > 题目详情
在下列四个函数中,满足性质:“对于区间(1,2)上的任意x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”的只有(  )
A、f(x)=
1
x
B、f(x)=|x|
C、f(x)=2
D、f(x)=x2
考点:函数恒成立问题
专题:导数的概念及应用
分析:|f(x2)-f(x1)|<|x2-x1|可化成
|f(x1)-f(x2)|
|x1-x2|
<1,表示的是函数图象上任意两点连线的斜率的绝对值,而四个选项中的函数都是(1,2)上可导的函数,因此即转化为它们的导数值的绝对值在(1,2)内是否恒小于1的问题,对四个选项中的函数分别求导,判断导函数的值域是否是(-1,1)或是(-1,1)的子集即可.
解答: 解:因为对于区间(1,2)上的任意x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”
所以函数图象上任意两点连线的斜率的绝对值小于1即可,又因为四个函数均是(1,2)上的可导函数,则在(1,2)内总能找到一条切线平行于任意两点连线,则问题即转化为
在(1,2)上四个函数的导数绝对值是否满足恒在(0,1)取值即可,
对于A:|f′(x)|=
1
x2
,当x∈(1,2)时,f′(x)∈(
1
4
,1)
⊆(0,1),故A符合题意;
对于B:由题意f(x)=x,f′(x)=1,故B不满足题意;
对于C:函数f(x)=2x,所以f′(x)=2>1,故C不满足题意;
对于D:f′(x)=2x,当x∈(1,2)时,f′(x)∈(2,4),故D不满足题意.
故选:A.
点评:本题考查了导数的几何意义,实际上是对于可导函数而言,割线在沿着某个方向平移的过程中极限位置是某点处的切线,从而将问题转化为导数的问题求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
log
1
2
(2x-1)
的定义域是(  )
A、[1,+∞)
B、(0,+∞)
C、[0,1]
D、(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2ax2+2x-3-a(a∈R,且a≠0),求抛物线y=f(x)的对称轴方程及顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+2,求函数f(x)在区间[1,+∞)上的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
|x+1|+|x-2|+a

(1)当a=-5时,求函数f(x)的定义域;
(2)若函数f(x)的定义域为R,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正△AOB顶点O位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,已知△AOB周长12
3
,求抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C和y轴相切,圆心在直线x-3y=0上,且被直线y=x截得的弦长为2
7

(1)求圆C的方程;  
(2)判断圆C与圆M:(x-10)2+(y-10)2=1的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,当x≥0时,f(x)为二次函数,且f(0)=1,f(x+1)=f(x)+2x.
(1)求f(x)的解析式;
(2)若3≤x≤4时,t≤f(x)≤2t+7恒成立,求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

试构造函数f(x)使得:
(1)f(x)定义域为(0,1),值域为[0,1];
(2)f(x)定义域为(0,1),值域为[0,1]且f(x)值域上每一点有且只有一个原象与之对应;
(3)f(x)定义域为(0,1),值域为[0,1]且f(x)值域上每一点都有无数个原象与之对应.

查看答案和解析>>

同步练习册答案