精英家教网 > 高中数学 > 题目详情

.
在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=,且AC=BC=5,SB=,如图 (12分)
(1)求侧面sBC与底面ABC所成二面角的大小
(2)求三棱锥的体积   

(1)由∠SAB=∠SAC=即SA平面ABC
,又∠ACB=即BCAC 得平面SACBC
∠SCA就是侧面SBC与底面ABC二面角的平面角
cos∠SCA=∠SCA= 即二面角大小为
(2)SA=  , ,
 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,
BC=
13
,SB=
29

(1)证明:SC⊥BC;
(2)求侧面SBC与底面ABC所成的二面角大小;
(3)(理)求异面直线SC与AB所成的角的大小(用反三角函数表示).
(文)求三棱锥的体积VS-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在△ABC中,E、F分别为AB、AC上的点,若
AE
AB
=m,
AF
AC
=n,则
S△AEF
S△ABC
=mn.拓展到空间:在三棱锥S-ABC中,D、E、F分别是侧棱SA、SB、SC上的点,若
SD
DA
=m,
SE
EB
=n,
SF
FC
=p,则
VS-DEF
VS-ABC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M,N分别为AB,SB的中点.
(1)证明:AC⊥SB;
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在三棱锥S-ABC中,SC⊥平面ABC,点P,M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角60°
(Ⅰ)求证:平面MAP⊥平面SAC;
(Ⅱ)求二面角M-AB-C的平面角的正切值;
(Ⅲ)求AP和CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•临沂二模)在三棱锥S-ABC中,△ABC是边长为4的正三角形,SB=2
5
SA=SC=2
3
,M、N分别是AB、SB的中点;
(1)证明:平面SAC⊥平面ABC;
(2)求直线MN与平面SBC所成角的正弦值.

查看答案和解析>>

同步练习册答案