【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了
年下半年该市
名农民工(其中技术工、非技术工各
名)的月工资,得到这
名农民工月工资的中位数为
百元(假设这
名农民工的月工资均在
(百元)内)且月工资收入在
(百元)内的人数为
,并根据调查结果画出如图所示的频率分布直方图:
![]()
(Ⅰ)求
,
的值;
(Ⅱ)已知这
名农民工中月工资高于平均数的技术工有
名,非技术工有
名,则能否在犯错误的概率不超过
的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:
,其中
.
|
|
|
|
|
|
|
|
|
|
【答案】(Ⅰ)
,
;(Ⅱ)不能在犯错误的概率不超过
的前提下,认为是不是技术工与月工资是否高于平均数有关
【解析】
(Ⅰ)根据频数计算出月工资收入在
(百元)内的频率,利用频率总和为
和频率分布直方图估计中位数的方法可构造出关于
的方程组,解方程组求得结果;(Ⅱ)根据题意得到列联表,从而计算出
,从而得到结论.
(Ⅰ)
月工资收入在
(百元)内的人数为![]()
月工资收入在
(百元)内的频率为:
;
由频率分布直方图得:![]()
化简得:
……①
由中位数可得:![]()
化简得:
……②
由①②解得:
,![]()
(Ⅱ)根据题意得到列联表:
技术工 | 非技术工 | 总计 | |
月工资不高于平均数 |
|
|
|
月工资高于平均数 |
|
|
|
总计 |
|
|
|
![]()
不能在犯错误的概率不超过
的前提下,认为是不是技术工与月工资是否高于平均数有关
科目:高中数学 来源: 题型:
【题目】某中学高三年级有学生500人,其中男生300人,女生200人。为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组:
分别加以统计,得到如图所示的频率分布直方图。
![]()
(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;
(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为3的正方形,
平面
,
,
,BE与平面
所成角为
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)设点M在线段BD上,且
平面BEF,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的左右焦点分别为
,
,离心率为
,点
在椭圆
上,
,
,过
与坐标轴不垂直的直线
与椭圆
交于
,
两点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,
的中点为
,在线段
上是否存在点
,使得
?若存在,求实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:
,
,
,
,
,
,
后得到年龄如图所示的频率分布直方图.
![]()
(1)试求这40人年龄的众数、中位数的估计值;
(2)(i)若从样本中年龄在
的居民中任取2人赠送健身卡,求这2人中至少有1人年龄低于60岁的概率;
(ii)己知该小区年龄在
内的总人数为1200,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的方程为y=
x-2
,又直线l过椭圆C:
(a>b>0)的右焦点,且椭圆的离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,1)的直线与椭圆C交于点A,B,求△AOB的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,
,
.
(1)求证:
平面BCD;
(2)求异面直线AB与CD所成角的余弦值;
(3)求点E到平面ACD的距离。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com