【题目】已知椭圆: ( )的左右焦点分别为, ,离心率为,点在椭圆上, , ,过与坐标轴不垂直的直线与椭圆交于, 两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若, 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于95为正品,小于95为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | |||||
机床甲 | 8 | 12 | 40 | 32 | 8 |
机床乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为正品的概率;
(2)甲机床生产一件零件,若是正品可盈利160元,次品则亏损20元;乙机床生产一件零件,若是正品可盈利200元,次品则亏损40元,在(1)的前提下,现需生产这种零件2件,以获得利润的期望值为决策依据,应该如何安排生产最佳?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的短轴长为2,且函数的图象与椭圆仅有两个公共点,过原点的直线与椭圆交于两点.
(1)求椭圆的标准方程;
(2)点为线段的中垂线与椭圆的一个公共点,求面积的最小值,并求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形中, , 为边的中点,将沿直线翻转成.若为线段的中点,则在翻折过程中:
①是定值;②点在某个球面上运动;
③存在某个位置,使;④存在某个位置,使平面.
其中正确的命题是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017 年省内某事业单位面向社会公开招骋工作人员,为保证公平竞争,报名者需要参加笔试和面试两部分,且要求笔试成绩必须大于或等于分的才有资格参加面试, 分以下(不含分)则被淘汰,现有名竞骋者参加笔试,参加笔试的成绩按区间分段,其频率分布直方图如图所示(频率分布直方图有污损),但是知道参加面试的人数为,且笔试成绩在的人数为.
(1)根据频率分布直方图,估算竞骋者参加笔试的平均成绩;
(2)若在面试过程中每人最多有次选题答题的机会,累计答对题或答错题, 答对题者方可参加复赛,已知面试者甲答对每一个问题的概率都相同,并且相互之间没有影响,若他连续三次答题中答对一次的概率为,求面试者甲答题个数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子原件生产厂生产的10件产品中,有8件一级品,2件二级品,一级品和二级品在外观上没有区别.从这10件产品中任意抽检2件,计算:
(1)2件都是一级品的概率;
(2)至少有一件二级品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: ,定点(常数)的直线与曲线相交于、两点.
(1)若点的坐标为,求证:
(2)若,以为直径的圆的位置是否恒过一定点?若存在,求出这个定点,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2016-2017学年辽宁省六校协作体高二下学期期初数学(理)】已知圆的圆心在坐标原点,且与直线相切.
(1)求直线被圆所截得的弦的长;
(2)过点作两条与圆相切的直线,切点分别为求直线的方程;
(3)若与直线垂直的直线与圆交于不同的两点,若为钝角,求直线 在轴上的截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD,PD⊥底面ABCD,且底面ABCD是边长为2的正方形,M、N分别为PB、PC的中点.
(1)证明:MN∥平面PAD;
(2)若PA与平面ABCD所成的角为45°,求四棱锥P﹣ABCD的体积V.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com