精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形中, 为边的中点,将沿直线翻转成.若为线段的中点,则在翻折过程中:

是定值;②点在某个球面上运动;

③存在某个位置,使;④存在某个位置,使平面.

其中正确的命题是_________.

【答案】①②④

【解析】解:取CD中点F连接MF,BF,则MFDA1,BFDE∴平面MBF∥平面DA1EMB∥平面DA1E,故④正确.

由余弦定理可得 所以 为定值,所以①正确

B是定点M是在以B为圆心,MB为半径的球面上故②正确.

假设③正确,即在某个位置,使得DEA1C

又矩形ABCD

满足 ,从而DE⊥平面A1EC,则DEA1E,这与DA1A1E矛盾.所以存在某个位置,使得DEA1C不正确,即③不正确.

综上,正确的命题是①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果一个实数数列{an}满足条件: (d为常数,n∈N*),则称这一数列“伪等差数列”,d称为“伪公差”.给出下列关于某个伪等差数列{an}的结论:①对于任意的首项a1 , 若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为单调递增数列;③这一数列可以是一个周期数列;④若这一数列的首项为1,伪公差为3,- 可以是这一数列中的一项;n∈N*⑤若这一数列的首项为0,第三项为﹣1,则这一数列的伪公差可以是 .其中正确的结论是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足 为数列的前项和,且,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调区间;

(2)若 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的中心在原点,长轴左、右端点轴上,椭圆的短轴为,且的离心率都为,直线, 交于两点,与交于两点,这四点纵坐标从大到小依次为.

(1)设,求的比值;

(2)若存在直线,使得,求两椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中, ,底面是菱形,且 ,过点作直线 为直线上一动点.

(1)求证:

(2)当二面角的大小为时,求的长;

(3)在(2)的条件下,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式 ; 函数 (其中 ).
(1)若函数g(θ)的最大值为4,求m的值.
(2)若记集合M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[5060),[6070),[7080),[8090),[90100]

1)求图中a的值;

2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[5090)之外的人数.

查看答案和解析>>

同步练习册答案