【题目】已知α∈(0, ),β∈(0, ),且满足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),则α+β= .
科目:高中数学 来源: 题型:
【题目】已知圆C的半径为1,圆心C(a,2a﹣4),(其中a>0),点O(0,0),A(0,3)
(1)若圆C关于直线x﹣y﹣3=0对称,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点P,使|PA|=|2PO|,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+m.
(1)试用定义证明:函数f(x)在(0,+∞)上单调递增;
(2)若关于x的不等式f(x)≥x3+3x2﹣3x在区间[1,2]上有解,求m的取值范围.参考公式:a3﹣b3=(a﹣b)(a2+ab+b2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市家庭煤气的使用量x(m3)和煤气费f(x)(元) 满足关系f(x)= ,已知某家庭今年前三个月的煤气费如表:
月份 | 用气量 | 煤气费 |
一月份 | 4m3 | 4 元 |
二月份 | 25m3 | 14 元 |
三月份 | 35m3 | 19 元 |
若四月份该家庭使用了20m3的煤气,则其煤气费为( )元.
A.10.5
B.10
C.11.5
D.11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,底面为正方形且各侧棱长均相等的四棱锥V﹣ABCD可绕着棱AB任意旋转,若AB平面α,M,N分别是AB,CD的中点,AB=2,VA= ,点V在平面α上的射影为点O,则当ON的最大时,二面角C﹣AB﹣O的大小是( )
A.90°
B.105°
C.120°
D.135°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos2x+ sinxcosx.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间[﹣ , ]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)的定义域为{x|﹣2≤x≤3,且x≠2},值域为{y|﹣1≤y≤2,且y≠0},则y=f(x)的图象可能是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com