精英家教网 > 高中数学 > 题目详情

如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且

(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.

(1)详见解析,(2)

解析试题分析:(1)首先表示正四棱锥各点坐标,再准确把垂直关系的判定转化为对应向量数量积为零,利用坐标形式进行计算,(2)直线与平面所成的角的计算,关键仍是平面的法向量的计算.利用向量垂直列出方程组,可解出法向量;再利用数量积,根据法向量与直线方向向量的余弦值的绝对值求直线与平面所成角的正弦值. 由于直线与平面所成角与法向量与直线方向向量的夹角不是相等或互补关系,而是互余或相差因此直线与平面所成角的正弦值等于法向量与直线方向向量的余弦值的绝对值,这是本题易错点.
试题解析:(1)因为正四棱锥的侧棱长与底边长都为.
     2分


     4分

     5分
(2)设平面的法向量为



     7分
     9分
与平面所成角为

所以与平面所成角的正弦值为     10分
考点:向量数量积,向量垂直,直线与平面所成角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知在棱长为2的正方体中,的中点.
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:
(2)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.

(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。

(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,已知是棱的中点.

求证:(1)平面
(2)直线∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,OACBD的交点,BB1M是线段B1D1的中点.

(1)求证:BM∥平面D1AC
(2)求证:D1O⊥平面AB1C
(3)求二面角B-AB1-C的大小.

查看答案和解析>>

同步练习册答案